MongoDB:数据模型介绍
在MongoDB的数据有灵活的模式。不像SQL数据库,(SQL数据库)要求你必须在插入数据之前决定和声明一个表的模式,MongoDB的集合不强制文档的结构。这个灵活性有利于文档到实体或对象的映射。每个文档可以匹配所要表示实体的数据字段,即使数据的变化很显著。
在MongoDB的数据有灵活的模式。不像SQL数据库,(SQL数据库)要求你必须在插入数据之前决定和声明一个表的模式,MongoDB的集合不强制文档的结构。这个灵活性有利于文档到实体或对象的映射。每个文档可以匹配所要表示实体的数据字段,即使数据的变化很显著。但在实际操作中,一个集合的文档共享一个相似的结构。
数据模型的关键挑战在于平衡应用的需要,数据库引擎的性能和数据存取模式。当设计数据模型时,要考虑数据在应用里的使用情况(如,查询、更新和处理数据),以及数据本身的内在结构。
文档结构
在为MongoDB应用设计数据模型时的关键是围绕文档的结构和应用时如何表示数据间的联系。有两个工具来允许应用来表示这些关系:引用和嵌入文档( references and embedded documents)。
引用引用通过包括连接或一个文档到另一个文档间的引用存储着数据间的关系。应用能够解析这些引用来访问到相关数据。广义上说,这些都是归一化的数据模型(normalized data models).
上图的数据模型使用引用来联系文档。contract文档和access文档都保护着user文档的引用。
下面介绍归一化数据模型在使用引用的优缺点:
归一化模型使用引用描述文档间的关系。一般地,使用归一化模型的情况有,
当嵌入会导致数据重复且不会提供有效的读性能。表示更复杂的多对多的关系对大型分级数据建模引用比嵌入式文档的灵活性更大。但客户端应用必须处理引用带来的查询问题。总之,归一化数据模型需要更多的往返服务器。
嵌入数据嵌入式文档通过在一个单一文档结构里存储相关数据来捕获数据间的关系。MongoDB的文档使在一个文档里的一个字段或字段数据嵌入一个文档作为子文档具体可能性。这些非规范化数据使得应用可以在一个单一数据库操作力获取和操纵数据。
上图的数据模型就是嵌入式字段保护所有的相关信息。
下面讨论嵌入子文档的数据模型的优缺点:
使用MongoDB,你可以在一个单一结构或文档嵌入相关数据。这个模型是著名的“非规范化”模型,利用了MongoDB丰富文档的优势。
嵌入数据模型允许应用在相同的数据库记录里存储相关片段信息。因此,应用在完成一个常规操作时,只需处理很少的查询或更新。
一般,当下面情形时可使用嵌入数据模型:
实体间有“包含关系”实体间有一对多的关系。在这些关系里,“多“或子文档经常被看做"一"或父文档的上下文里一般来说,嵌入提供了更好的读性能,以及在单一数据库操作里请求和获取相关数据的能力。嵌入数据模型使得在哪一个原子操作里更新相关数据成为可能。
然而,在一个文档的嵌入数据模型可能导致文档创建后的增长。文档的增长会影响写性能并导致数据碎片问题。并且,在MongoDB里的文档大小必须小于最大的BSON文档大小。对大型二进制数据,考虑GridFS。
写操作的原子性
在MongoDB,写操作在文档这一级是原子的,并且没有单一的写操作能原子性的影响多个文档或集合。一个有嵌入数据的非规范化数据模型在一个单一文档里包含了能表示一个实体的相关数据。这有利于写操作的原子性,因为单一的写操作能直接对一个实体插入或更新数据。规范化数据会在多个集合里分散了数据,这会要求多次写操作,因此不是原子性的。
然而,有利于原子性写的模式会限制一个应用使用数据的方法或修改数据的方法。因此需要平衡原子性和平衡性。
文档增长
有的更新,比如向数组添加元素或添加新的字段,会增大文档的大小。如果文档的大小超过了给该文档分配的空间,MongoDB会重新定位这个文档。文档的增长会影响规范化和非规范化数据的选择。
数据使用和性能
当设计一个文档模型,要考虑应用将如何使用你的数据库。比如,如果你的应用仅使用最近插入的数据,考虑使用 Capped Collections.或者,你的应用需要总是读操作,添加索引是常见的提升性能的办法。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Artikel ini memperkenalkan cara mengkonfigurasi MongoDB pada sistem Debian untuk mencapai pengembangan automatik. Langkah -langkah utama termasuk menubuhkan set replika MongoDB dan pemantauan ruang cakera. 1. Pemasangan MongoDB Pertama, pastikan MongoDB dipasang pada sistem Debian. Pasang menggunakan arahan berikut: SudoaptDateSudoaptInstall-ImongoDB-Org 2. Mengkonfigurasi set replika replika MongoDB MongoDB Set memastikan ketersediaan dan kelebihan data yang tinggi, yang merupakan asas untuk mencapai pengembangan kapasiti automatik. Mula MongoDB Service: sudosystemctlstartmongodsudosys

Apabila membangunkan laman web e-dagang, saya menghadapi masalah yang sukar: bagaimana menyediakan pengguna dengan cadangan produk yang diperibadikan. Pada mulanya, saya mencuba beberapa algoritma cadangan mudah, tetapi hasilnya tidak sesuai, dan kepuasan pengguna juga terjejas. Untuk meningkatkan ketepatan dan kecekapan sistem cadangan, saya memutuskan untuk menggunakan penyelesaian yang lebih profesional. Akhirnya, saya memasang Andres-Montanez/Cadangan-Bundle melalui komposer, yang bukan sahaja menyelesaikan masalah saya, tetapi juga meningkatkan prestasi sistem cadangan. Anda boleh belajar komposer melalui alamat berikut:

Artikel ini menerangkan cara membina pangkalan data MongoDB yang sangat tersedia pada sistem Debian. Kami akan meneroka pelbagai cara untuk memastikan keselamatan data dan perkhidmatan terus beroperasi. Strategi Utama: Replicaset: Replicaset: Gunakan replika untuk mencapai redundansi data dan failover automatik. Apabila nod induk gagal, set replika secara automatik akan memilih nod induk baru untuk memastikan ketersediaan perkhidmatan yang berterusan. Sandaran dan Pemulihan Data: Secara kerap Gunakan perintah Mongodump untuk membuat sandaran pangkalan data dan merumuskan strategi pemulihan yang berkesan untuk menangani risiko kehilangan data. Pemantauan dan penggera: Menyebarkan alat pemantauan (seperti Prometheus, Grafana) untuk memantau status MongoDB dalam masa nyata, dan

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

Penjelasan terperinci mengenai strategi sandaran yang cekap MongoDB di bawah sistem CentOS Artikel ini akan memperkenalkan secara terperinci pelbagai strategi untuk melaksanakan sandaran MongoDB pada sistem CentOS untuk memastikan kesinambungan data dan kesinambungan perniagaan. Kami akan merangkumi sandaran manual, sandaran masa, sandaran skrip automatik, dan kaedah sandaran dalam persekitaran kontena Docker, dan menyediakan amalan terbaik untuk pengurusan fail sandaran. Sandaran Manual: Gunakan perintah Mongodump untuk melakukan sandaran penuh manual, contohnya: Mongodump-Hlocalhost: 27017-U Pengguna-P Password-D Database Data-O/Backup Direktori Perintah ini akan mengeksport data dan metadata pangkalan data yang ditentukan ke direktori sandaran yang ditentukan.

Menyulitkan pangkalan data MongoDB pada sistem Debian memerlukan langkah berikut: Langkah 1: Pasang MongoDB terlebih dahulu, pastikan sistem Debian anda dipasang MongoDB. Jika tidak, sila rujuk kepada dokumen MongoDB rasmi untuk pemasangan: https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/step 2: menghasilkan fail kunci penyulitan Buat fail yang mengandungi kunci penyulitan dan tetapkan kebenaran yang betul:

Panduan Penyebaran Pangkalan Data Gitlab pada sistem CentOS Memilih pangkalan data yang betul adalah langkah utama dalam berjaya menggunakan GitLab. Gitlab serasi dengan pelbagai pangkalan data, termasuk MySQL, PostgreSQL, dan MongoDB. Artikel ini akan menerangkan secara terperinci bagaimana untuk memilih dan mengkonfigurasi pangkalan data ini. Cadangan Pemilihan Pangkalan Data MySQL: Sistem Pengurusan Pangkalan Data Relasi yang digunakan secara meluas (RDBMS), dengan prestasi yang stabil dan sesuai untuk kebanyakan senario penempatan GitLab. PostgreSQL: RDBMS sumber terbuka yang kuat, menyokong pertanyaan kompleks dan ciri -ciri canggih, sesuai untuk mengendalikan set data yang besar. MongoDB: Pangkalan Data NoSQL Popular, Bagus Mengendalikan Laut

Untuk menyediakan pengguna MongoDB, ikuti langkah -langkah ini: 1. Sambungkan ke pelayan dan buat pengguna pentadbir. 2. Buat pangkalan data untuk memberikan akses pengguna. 3. Gunakan arahan CreateUser untuk membuat pengguna dan menentukan hak dan hak akses pangkalan data mereka. 4. Gunakan perintah getusers untuk memeriksa pengguna yang dibuat. 5. Secara pilihan menetapkan keizinan lain atau memberi kebenaran kepada pengguna ke koleksi tertentu.
