In this post, I will demonstrate dynamic remastering of the resources in RAC .In RAC, every data block is mastered by an instance. Mastering a block simply means that master instance keeps track of the state of the block until the next reco
In this post, I will demonstrate dynamic remastering of the resources in RAC .
In RAC, every data block is mastered by an instance. Mastering a block simply means that master instance keeps track of the state of the block until the next reconfiguration event .When one instance departs the cluster, the GRD portion of that instance needs
to be redistributed to the surviving nodes. Similarly, when a new instance enters the cluster, the GRD portions of the existing instances must be redistributed to create the GRD portion of the new instance. This is called dynamic resource reconfiguration.
In addition to dynamic resource reconfiguration, This is called dynamic remastering. The basic idea is to master a buffer cache resource on the instance where it is mostly accessed. In order to determine whether dynamic remastering is necessary, the GCS essentially
keeps track of the number of GCS requests on a per-instance and per-object basis. This means that if an instance, compared to another, is heavily accessing blocks from the same object, the GCS can take the decision to dynamically migrate all of that object’s
resources to the instance that is accessing the object most. LMON, LMD and LMS processes are responsible for Dynamic remastering.
– Remastering can be triggered as result of
– Manual remastering
– Resource affinity
– Instance crash
– CURRENT SCENARIO -
- 3 node setup
- name of the database – racdb
— SETUP –
– Get data_object_id for scott.emp
OWNER DATA_OBJECT_ID OBJECT_NAME
———- ————– —————
SCOTT 73181 EMP
– Get File_id and block_id of emp table
EMPNO DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)
———- ———————————— ————————————
7369 4 151
7788 4 151
– MANUAL REMASTERING –
You can manually remaster an object with oradebug command :
oradebug lkdebug -m pkey
– NODE1 – shutdown the database and restart
[oracle@host01 ~]$ srvctl stop database -d racdb
srvctl start database -d racdb
srvctl status database -d racdb
Salin selepas log masuk
– Issue a select on the object from NODE2
SCOTT@NODE2> select * from emp;
Salin selepas log masuk
– Find the GCS resource name to be used in the query
x$kjbl.kjblname = resource name in hexadecimal format([id1],[id2],[type]
x$kjbl.kjblname2 = resource name in decimal format
Hexname will be used to query resource in V$gc_element and v$dlm_rss views
get_resource_name
SYS@NODE2>col hexname for a25
col resource_name for a15
select b.kjblname hexname, b.kjblname2 resource_name,
b.kjblgrant, b.kjblrole, b.kjblrequest
from x$le a, x$kjbl b
where a.le_kjbl=b.kjbllockp
and a.le_addr = (select le_addr
from x$bh
where dbablk = 151
and obj = 73181
and class = 1
and state <> 3);
Salin selepas log masuk
HEXNAME RESOURCE_NAME KJBLGRANT KJBLROLE KJBLREQUE
————————- ————— ——— ———- ———
[0x97][0x4],[BL] 151,4,BL KJUSERPR 0 KJUSERNL
– Check the current master of the block –
– Note that current master of scott.emp is node1 (numbering starts from 0)
– Previous master = 32767 is a place holder indicating that prior master
was not known, meaning first remastering of that object.hat index happened.
Now the master is 0 which is instance 1.
– REMASTER_CNT = 1 indicating the object has been remastered only once
SYS>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
from dba_objects o, v$gcspfmaster_info m
where o.data_object_id=73181
and m.data_object_id = 73181 ;
Salin selepas log masuk
OBJECT CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—— ————– ————— ————
EMP 0 32767 1
– Use following SQL to show master and owner of the block.
This SQL joins x$kjbl with x$le to retrieve resource name.
– Note that current master is node1(KJBLMASTER=0) and current owner of the block is
node2(KJBLOWNER = 1)
SYS@NODE2> select kj.kjblname, kj.kjblname2, kj.kjblowner,
kj.kjblmaster
from (select kjblname, kjblname2, kjblowner,
kjblmaster, kjbllockp
from x$kjbl
where kjblname = '[0x97][0x4],[BL]'
) kj, x$le le
where le.le_kjbl = kj.kjbllockp
order by le.le_addr;
Salin selepas log masuk
KJBLNAME KJBLNAME2 KJBLOWNER KJBLMASTER
—————————— —————————— ———- ———-
[0x97][0x4],[BL] 151,4,BL 1 0
– Manually master the EMP table to node2 –
SYS@NODE2>oradebug lkdebug -m pkey 74625
Salin selepas log masuk
– Check that the current master of the block has changed to node2 (numbering starts from 0)
– Previous master = 0 (Node1)
– REMASTER_CNT = 2 indicating the object has been remastered twice
SYS>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
from dba_objects o, v$gcspfmaster_info m
where o.data_object_id=74625
and m.data_object_id = 74625 ;
Salin selepas log masuk
OBJECT CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—— ————– ————— ————
EMP 1 0 2
– Find master and owner of the block.
– Note that current owner of the block is Node2 (KJBLOWNER=1)
from where query was issued)
– current master of the block has been changed to node2 (KJBLMASTER=1)
SYS> select kj.kjblname, kj.kjblname2, kj.kjblowner,
kj.kjblmaster
from (select kjblname, kjblname2, kjblowner,
kjblmaster, kjbllockp
from x$kjbl
where kjblname = '[0x97][0x4],[BL]' ) kj, x$le le
where le.le_kjbl = kj.kjbllockp
order by le.le_addr;
Salin selepas log masuk
KJBLNAME KJBLNAME2 KJBLOWNER KJBLMASTER
—————————— —————————— ———- ———-
[0x97][0x4],[BL] 151,4,BL 1 1
—————————————————————————————
– REMASTERING DUE TO RESOURCE AFFINITY –
GCS masters a buffer cache resource on the instance where it is mostly accessed. In order to determine whether dynamic remastering is necessary, the GCS essentially keeps track of the number of GCS requests on a per-instance and per-object basis. This
means that if an instance, compared to another, is heavily accessing blocks from the same object, the GCS can take the decision to dynamically migrate all of that object’s resources to the instance that is accessing the object most.
X$object_policy_statistics maintains the statistics about objects and OPENs
on those objects.LCK0 process maintains these object affinity statistics.
Following parameters affect dynamic remastering due to resource affinity :
_gc_policy_limit : If an instance opens 50 more opens on an object then the other instance (controlled by _gc_policy_limit parameter), then that object is a candidate for remastering. That object is queued and LMD0 reads the queue and
initiates GRD freeze. LMON performs reconfiguration of buffer cache locks working with LMS processes. All these are visible in LMD0/LMON trace files.
_gc_policy_time : It controls how often the queue is checked to see if the remastering must be triggered or not with a default value of 10 minutes.
_gc_policy_minimum: This parameter is defined as “minimum amount of dynamic affinity activity per minute” to be a candidate for remastering. Defaults to 2500 and I think, it is lower in a busy environment.
To disable DRM completely, set _gc_policy_limit and _gc_policy_minimum to much higher value, say 10Million. Setting the parameter _gc_policy_time to 0 will completely disable DRM, but that also means that you can not manually remaster objects. Further, $object_policy_statistics
is not maintained if DRM is disabled.
— SETUP –-
SYS>drop table scott.test purge;
create table scott.test as select * from sh.sales;
insert into scott.test select * from scott.test;
commit;
insert into scott.test select * from scott.test;
commit;
insert into scott.test select * from scott.test;
commit;
insert into scott.test select * from scott.test;
commit;
Salin selepas log masuk
– Get data_object_id for scott.test
SYS> col data_object_id for 9999999
col object_name for a15
select owner, data_object_id, object_name, object_id
from dba_objects
where owner = 'SCOTT'
and object_name = 'TEST';
Salin selepas log masuk
OWNER DATA_OBJECT_ID OBJECT_NAME OBJECT_ID
—————————— ————– ————— ———-
SCOTT 74626 TEST 74626
– Check the initial values of the parameters _gc_policy_minimum and _gc_policy_time
– Enter name of the parameter when prompted
SYS>
SET linesize 235
col Parameter FOR a20
col Instance FOR a10
col Description FOR a40 word_wrapped
SELECT a.ksppinm "Parameter",
c.ksppstvl "Instance",
a.ksppdesc "Description"
FROM x$ksppi a, x$ksppcv b, x$ksppsv c, v$parameter p
WHERE a.indx = b.indx AND a.indx = c.indx
AND p.name(+) = a.ksppinm
AND UPPER(a.ksppinm) LIKE UPPER('%¶meter%')
ORDER BY a.ksppinm;
Enter value for parameter: gc_policy
old 11: AND UPPER(a.ksppinm) LIKE UPPER('%¶meter%')
new 11: AND UPPER(a.ksppinm) LIKE UPPER('%gc_policy%')
Salin selepas log masuk
Parameter Instance Description
——————– ———- —————————————-
_gc_policy_minimum 1500 dynamic object policy minimum activity
per minute
_gc_policy_time 10 how often to make object policy
decisions in minutes
– Set _gc_policy_minimum and _gc_policy_time to very small values
so that we can demonstrate remastering
SYS>alter system set "_gc_policy_minimum" = 10 scope=spfile;
alter system set "_gc_policy_time" = 1 scope=spfile;
Salin selepas log masuk
– NODE1 – shutdown the database and restart
[oracle@host01 ~]$ srvctl stop database -d racdb
srvctl start database -d racdb
srvctl status database -d racdb
Salin selepas log masuk
– Check that parameter values have been changed to the minimum
allowed by oracle although these values are not the ones we specified
– Enter name of the parameter when prompted
SYS>
SET linesize 235
col Parameter FOR a20
col Instance FOR a10
col Description FOR a40 word_wrapped
SELECT a.ksppinm "Parameter", c.ksppstvl "Instance", a.ksppdesc "Description"
FROM x$ksppi a, x$ksppcv b, x$ksppsv c, v$parameter p
WHERE a.indx = b.indx
AND a.indx = c.indx
AND p.name(+) = a.ksppinm
AND UPPER(a.ksppinm) LIKE UPPER('%¶meter%')
ORDER BY a.ksppinm;
old 11: AND UPPER(a.ksppinm) LIKE UPPER('%¶meter%')
new 11: AND UPPER(a.ksppinm) LIKE UPPER('%gc_policy%')
Enter value for parameter: gc_policy
Salin selepas log masuk
Parameter Instance Description
——————– ———- —————————————-
_gc_policy_minimum 20 dynamic object policy minimum activity
per minute
_gc_policy_time 4 how often to make object policy
decisions in minutes
- Assign TEST to node1 manually
– Issue a select on scott.test from node1 –
SYS@NODE1>oradebug lkdebug -m pkey 74626
SCOTT@NODE1>select * from scott.test;
Salin selepas log masuk
– check the current master of scott.test –
– Note that current master of scott.test is node1 (numbering starts from 0)
– Previous master = 2 (node3)
– REMASTER_CNT = 3 because while I was doing this demonstartion, remastering
was initated 2 times earlier also.
SYS@NODE1>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
from dba_objects o, v$gcspfmaster_info m
where o.data_object_id=74626
and m.data_object_id = 74626 ;
Salin selepas log masuk
OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
————— ————– ————— ————
TEST 0 2 3
– Issue an insert statement on scott.test from node3 so that scott.test
will be remastered to node3
SCOTT@NODE3>insert into scott.test select * from test;
Salin selepas log masuk
– check repeatedly that opens are increasing on scott.test with time
SYS@NODE1>select inst_id, sopens, xopens
from x$object_policy_statistics
where object=74626;
Salin selepas log masuk
INST_ID SOPENS XOPENS
———- ———- ———-
1 3664 0
SYS@NODE1>/
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk
INST_ID SOPENS XOPENS
———- ———- ———-
1 7585 1305
.
.
.
SYS@NODE1>/
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk
INST_ID SOPENS XOPENS
———- ———- ———-
1 12788 17000
SYS@NODE1>/
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk
INST_ID SOPENS XOPENS
———- ———- ———-
1 35052 39297
– check repeatedly if remastering has been initiated –
– Note that after some time
. current master changes from node1CURRENT_MASTER =0) to node3 (CURRENT_MASTER =2)
. Previous master changes from node3 ( PREVIOUS_MASTER=2) to node1( PREVIOUS_MASTER=0)
– Remaster count increases from 3 to 4.
.
SYS@NODE2>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
from dba_objects o, v$gcspfmaster_info m
where o.data_object_id=74626
and m.data_object_id = 74626 ;
Salin selepas log masuk
16:09:16 SYS@NODE2>/
Salin selepas log masuk
OBJECT_NAME
OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—————– ————– ————— ————
TEST 0 2 3
.
.
.
.
16:12:24 SYS@NODE2>/
Salin selepas log masuk
OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
——————————————————————————–
TEST 2 0 4
—- REMASTERING DUE TO INSTANCE CRASH –
Presently node3 is the master of SCOTT.TEST
Let us crash node3 and monitor the remastering process
root@node3#init 6
Salin selepas log masuk
– check repeatedly if remastering has been initiated –
– Note that scott.test has been remastered to node2 (CURRENT_MASTER=1)
– PREVIOUS_MASTER =2 and REMASTER_CNT has increased from 4 to 5
SYS@NODE2>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
from dba_objects o, v$gcspfmaster_info m
where o.data_object_id=74626
and m.data_object_id = 74626 ;
Salin selepas log masuk
OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
————— ————– ————— ————
TEST 1 2 5
— CLEANUP —
SYS@NODE1>drop table scott.test purge;
SYa@NODE1S>
alter system reset "_gc_policy_minimum" = 10 scope=spfile;
alter system reset "_gc_policy_time" = 1 scope=spfile;
[oracle@host01 ~]$ srvctl stop database -d racdb
srvctl start database -d racdb
srvctl status database -d racdb
Salin selepas log masuk
References: