Alex的Hadoop菜鸟教程:第8课Sqoop1安装/导入/导出教程
靠!sqoop2的文档太少了,而且居然不支持Hbase,十分简陋,所以我愤而放弃Sqoop2转为使用Sqoop1,之前跟着我教程看到朋友不要拿砖砸我,我是也是不知情的群众 卸载sqoop2 这步可选,如果你们是照着我之前的教程你们已经装了sqoop2就得先卸载掉,没装的可以跳
靠!sqoop2的文档太少了,而且居然不支持Hbase,十分简陋,所以我愤而放弃Sqoop2转为使用Sqoop1,之前跟着我教程看到朋友不要拿砖砸我,我是也是不知情的群众
卸载sqoop2
这步可选,如果你们是照着我之前的教程你们已经装了sqoop2就得先卸载掉,没装的可以跳过这步
$ sudo su - $ service sqoop2-server stop $ yum -y remove sqoop2-server $ yum -y remove sqoop2-client
安装Sqoop1
yum install -y sqoop
用help测试下是否有安装好
# sqoop help Warning: /usr/lib/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 14/11/28 11:33:11 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.0.1 usage: sqoop COMMAND [ARGS] Available commands: codegen Generate code to interact with database records create-hive-table Import a table definition into Hive eval Evaluate a SQL statement and display the results export Export an HDFS directory to a database table help List available commands import Import a table from a database to HDFS import-all-tables Import tables from a database to HDFS job Work with saved jobs list-databases List available databases on a server list-tables List available tables in a database merge Merge results of incremental imports metastore Run a standalone Sqoop metastore version Display version information See 'sqoop help COMMAND' for information on a specific command.
拷贝驱动到 /usr/lib/sqoop/lib
mysql jdbc 驱动下载地址
下载后,解压开找到驱动jar包,upload到服务器上,然后移过去
mv /home/alex/mysql-connector-java-5.1.34-bin.jar /usr/lib/sqoop/lib
导入
数据准备
在mysql里面建立一个表CREATE TABLE `employee` ( `id` int(11) NOT NULL, `name` varchar(20) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=MyISAM DEFAULT CHARSET=utf8;
插入几条数据
insert into employee (id,name) values (1,'michael'); insert into employee (id,name) values (2,'ted'); insert into employee (id,name) values (3,'jack');
导入mysql到hdfs
列出所有表
我们先不急着导入,先做几个准备步骤热身一下,也方便排查问题列出所有数据库
# sqoop list-databases --connect jdbc:mysql://localhost:3306/sqoop_test --username root --password root Warning: /usr/lib/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 14/12/01 09:20:28 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.0.1 14/12/01 09:20:28 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 14/12/01 09:20:28 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. information_schema cacti metastore mysql sqoop_test wordpress zabbix
先用sqoop连接上数据库并列出所有表
# sqoop list-tables --connect jdbc:mysql://localhost/sqoop_test --username root --password root Warning: /usr/lib/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 14/11/28 11:46:11 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.0.1 14/11/28 11:46:11 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 14/11/28 11:46:11 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. employee student workers
这条命令不用跟驱动的类名是因为sqoop默认支持mysql的,如果要跟jdbc驱动的类名用
# sqoop list-tables --connect jdbc:mysql://localhost/sqoop_test --username root --password root --driver com.mysql.jdbc.Driver
导入数据到hdfs
sqoop import --connect jdbc:mysql://localhost:3306/sqoop_test --username root --password root --table employee --m 1 --target-dir /user/test3
# sqoop import --connect jdbc:mysql://localhost:3306/sqoop_test --username root --password root --table employee --m 1 --target-dir /user/test Warning: /usr/lib/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 14/12/01 14:15:41 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.0.1 14/12/01 14:15:41 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 14/12/01 14:15:41 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 14/12/01 14:15:41 INFO tool.CodeGenTool: Beginning code generation 14/12/01 14:15:42 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `employee` AS t LIMIT 1 14/12/01 14:15:42 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `employee` AS t LIMIT 1 14/12/01 14:15:42 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/lib/hadoop-mapreduce Note: /tmp/sqoop-root/compile/7b8091924ce8deb4f2ccae14c404a5bf/employee.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 14/12/01 14:15:45 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/7b8091924ce8deb4f2ccae14c404a5bf/employee.jar 14/12/01 14:15:45 WARN manager.MySQLManager: It looks like you are importing from mysql. 14/12/01 14:15:45 WARN manager.MySQLManager: This transfer can be faster! Use the --direct 14/12/01 14:15:45 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path. 14/12/01 14:15:45 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql) 14/12/01 14:15:45 INFO mapreduce.ImportJobBase: Beginning import of employee 14/12/01 14:15:46 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 14/12/01 14:15:47 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 14/12/01 14:15:47 INFO client.RMProxy: Connecting to ResourceManager at xmseapp01/10.172.78.111:8032 14/12/01 14:15:50 INFO db.DBInputFormat: Using read commited transaction isolation 14/12/01 14:15:51 INFO mapreduce.JobSubmitter: number of splits:1 14/12/01 14:15:51 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1406097234796_0019 14/12/01 14:15:52 INFO impl.YarnClientImpl: Submitted application application_1406097234796_0019 14/12/01 14:15:52 INFO mapreduce.Job: The url to track the job: http://xmseapp01:8088/proxy/application_1406097234796_0019/ 14/12/01 14:15:52 INFO mapreduce.Job: Running job: job_1406097234796_0019 14/12/01 14:16:08 INFO mapreduce.Job: Job job_1406097234796_0019 running in uber mode : false 14/12/01 14:16:08 INFO mapreduce.Job: map 0% reduce 0% 14/12/01 14:16:19 INFO mapreduce.Job: map 100% reduce 0% 14/12/01 14:16:20 INFO mapreduce.Job: Job job_1406097234796_0019 completed successfully 14/12/01 14:16:21 INFO mapreduce.Job: Counters: 30 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=99855 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=87 HDFS: Number of bytes written=16 HDFS: Number of read operations=4 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Other local map tasks=1 Total time spent by all maps in occupied slots (ms)=8714 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=8714 Total vcore-seconds taken by all map tasks=8714 Total megabyte-seconds taken by all map tasks=8923136 Map-Reduce Framework Map input records=2 Map output records=2 Input split bytes=87 Spilled Records=0 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=58 CPU time spent (ms)=1560 Physical memory (bytes) snapshot=183005184 Virtual memory (bytes) snapshot=704577536 Total committed heap usage (bytes)=148897792 File Input Format Counters Bytes Read=0 File Output Format Counters Bytes Written=16 14/12/01 14:16:21 INFO mapreduce.ImportJobBase: Transferred 16 bytes in 33.6243 seconds (0.4758 bytes/sec) 14/12/01 14:16:21 INFO mapreduce.ImportJobBase: Retrieved 2 records.
查看一下结果
# hdfs dfs -ls /user/test Found 2 items -rw-r--r-- 2 root supergroup 0 2014-12-01 14:16 /user/test/_SUCCESS -rw-r--r-- 2 root supergroup 16 2014-12-01 14:16 /user/test/part-m-00000 # hdfs dfs -cat /user/test/part-m-00000 1,michael 2,ted
我也不知道为什么mysql有3条数据,而导入了之后只有2条,有哪位懂的介绍下?
我遇到遇到的问题
如果你遇到以下问题14/12/01 10:12:42 INFO mapreduce.Job: Task Id : attempt_1406097234796_0017_m_000000_0, Status : FAILED Error: employee : Unsupported major.minor version 51.0
原因:sqoop是使用jdk1.7编译的,所以如果你用 ps aux| grep hadoop 看到hadoop用的是1.6运行的,那sqoop不能正常工作 注意:CDH4.7以上已经兼容jdk1.7 ,但如果你是从4.5升级上来的会发现hadoop用的是jdk1.6,需要修改一下整个hadoop调用的jdk为1.7,而且这是官方推荐的搭配
关于改jdk的方法
官方提供了2个方法 http://www.cloudera.com/content/cloudera/en/documentation/cdh4/latest/CDH4-Requirements-and-Supported-Versions/cdhrsv_topic_3.html这个是让你把 /usr/java/ 下建一个软链叫 default 指向你要的jdk,我这么做了,无效 http://www.cloudera.com/content/cloudera/en/documentation/archives/cloudera-manager-4/v4-5-3/Cloudera-Manager-Enterprise-Edition-Installation-Guide/cmeeig_topic_16_2.html
这个是叫你增加一个环境变量, 我这么做了,无效 最后我用了简单粗暴的办法:停掉所有相关服务,然后删掉那个该死的jdk1.6然后再重启,这回就用了 /usr/java/default 了
停掉所有hadoop相关服务的命令
for x in `cd /etc/init.d ; ls hive-*` ; do sudo service $x stop ; done for x in `cd /etc/init.d ; ls hbase-*` ; do sudo service $x stop ; done /etc/init.d/zookeeper-server stop for x in `cd /etc/init.d ; ls hadoop-*` ; do sudo service $x stop ; done
zookeeper , hbase, hive 如果你们没装就跳过。建议你们用ps aux | grep jre1.6 去找找有什么服务,然后一个一个关掉,先关其他的,最后关hadoop
启动所有
for x in `cd /etc/init.d ; ls hadoop-*` ; do sudo service $x start ; done /etc/init.d/zookeeper-server start for x in `cd /etc/init.d ; ls hbase-*` ; do sudo service $x start ; done for x in `cd /etc/init.d ; ls hive-*` ; do sudo service $x start ; done
从hdfs导出数据到mysql
接着这个例子做数据准备
清空employeetruncate employee
导出数据到mysql
# sqoop export --connect jdbc:mysql://localhost:3306/sqoop_test --username root --password root --table employee --m 1 --export-dir /user/test Warning: /usr/lib/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 14/12/01 15:16:50 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.0.1 14/12/01 15:16:50 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 14/12/01 15:16:51 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 14/12/01 15:16:51 INFO tool.CodeGenTool: Beginning code generation 14/12/01 15:16:51 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `employee` AS t LIMIT 1 14/12/01 15:16:52 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `employee` AS t LIMIT 1 14/12/01 15:16:52 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/lib/hadoop-mapreduce Note: /tmp/sqoop-root/compile/f4a75fdefe1eb604181d47d6bc827e48/employee.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 14/12/01 15:16:55 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/f4a75fdefe1eb604181d47d6bc827e48/employee.jar 14/12/01 15:16:55 INFO mapreduce.ExportJobBase: Beginning export of employee 14/12/01 15:16:55 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 14/12/01 15:16:57 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative 14/12/01 15:16:57 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 14/12/01 15:16:57 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 14/12/01 15:16:57 INFO client.RMProxy: Connecting to ResourceManager at xmseapp01/10.172.78.111:8032 14/12/01 15:17:00 INFO input.FileInputFormat: Total input paths to process : 1 14/12/01 15:17:00 INFO input.FileInputFormat: Total input paths to process : 1 14/12/01 15:17:00 INFO mapreduce.JobSubmitter: number of splits:1 14/12/01 15:17:00 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1406097234796_0021 14/12/01 15:17:01 INFO impl.YarnClientImpl: Submitted application application_1406097234796_0021 14/12/01 15:17:01 INFO mapreduce.Job: The url to track the job: http://xmseapp01:8088/proxy/application_1406097234796_0021/ 14/12/01 15:17:01 INFO mapreduce.Job: Running job: job_1406097234796_0021 14/12/01 15:17:13 INFO mapreduce.Job: Job job_1406097234796_0021 running in uber mode : false 14/12/01 15:17:13 INFO mapreduce.Job: map 0% reduce 0% 14/12/01 15:17:21 INFO mapreduce.Job: Task Id : attempt_1406097234796_0021_m_000000_0, Status : FAILED Error: java.io.IOException: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Unknown database 'sqoop_test' at org.apache.sqoop.mapreduce.ExportOutputFormat.getRecordWriter(ExportOutputFormat.java:79) at org.apache.hadoop.mapred.MapTask$NewDirectOutputCollector.<init>(MapTask.java:624) at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:744) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:340) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:163) Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Unknown database 'sqoop_test' at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at com.mysql.jdbc.Util.handleNewInstance(Util.java:377) at com.mysql.jdbc.Util.getInstance(Util.java:360) at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:978) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3887) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3823) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:870) at com.mysql.jdbc.MysqlIO.proceedHandshakeWithPluggableAuthentication(MysqlIO.java:1659) at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:1206) at com.mysql.jdbc.ConnectionImpl.coreConnect(ConnectionImpl.java:2234) at com.mysql.jdbc.ConnectionImpl.connectOneTryOnly(ConnectionImpl.java:2265) at com.mysql.jdbc.ConnectionImpl.createNewIO(ConnectionImpl.java:2064) at com.mysql.jdbc.ConnectionImpl.<init>(ConnectionImpl.java:790) at com.mysql.jdbc.JDBC4Connection.<init>(JDBC4Connection.java:44) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at com.mysql.jdbc.Util.handleNewInstance(Util.java:377) at com.mysql.jdbc.ConnectionImpl.getInstance(ConnectionImpl.java:395) at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:325) at java.sql.DriverManager.getConnection(DriverManager.java:571) at java.sql.DriverManager.getConnection(DriverManager.java:215) at org.apache.sqoop.mapreduce.db.DBConfiguration.getConnection(DBConfiguration.java:302) at org.apache.sqoop.mapreduce.AsyncSqlRecordWriter.<init>(AsyncSqlRecordWriter.java:76) at org.apache.sqoop.mapreduce.ExportOutputFormat$ExportRecordWriter.<init>(ExportOutputFormat.java:95) at org.apache.sqoop.mapreduce.ExportOutputFormat.getRecordWriter(ExportOutputFormat.java:77) ... 8 more 14/12/01 15:17:29 INFO mapreduce.Job: Task Id : attempt_1406097234796_0021_m_000000_1, Status : FAILED Error: java.io.IOException: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Unknown database 'sqoop_test' at org.apache.sqoop.mapreduce.ExportOutputFormat.getRecordWriter(ExportOutputFormat.java:79) at org.apache.hadoop.mapred.MapTask$NewDirectOutputCollector.<init>(MapTask.java:624) at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:744) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:340) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:163) Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Unknown database 'sqoop_test' at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at com.mysql.jdbc.Util.handleNewInstance(Util.java:377) at com.mysql.jdbc.Util.getInstance(Util.java:360) at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:978) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3887) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3823) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:870) at com.mysql.jdbc.MysqlIO.proceedHandshakeWithPluggableAuthentication(MysqlIO.java:1659) at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:1206) at com.mysql.jdbc.ConnectionImpl.coreConnect(ConnectionImpl.java:2234) at com.mysql.jdbc.ConnectionImpl.connectOneTryOnly(ConnectionImpl.java:2265) at com.mysql.jdbc.ConnectionImpl.createNewIO(ConnectionImpl.java:2064) at com.mysql.jdbc.ConnectionImpl.<init>(ConnectionImpl.java:790) at com.mysql.jdbc.JDBC4Connection.<init>(JDBC4Connection.java:44) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at com.mysql.jdbc.Util.handleNewInstance(Util.java:377) at com.mysql.jdbc.ConnectionImpl.getInstance(ConnectionImpl.java:395) at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:325) at java.sql.DriverManager.getConnection(DriverManager.java:571) at java.sql.DriverManager.getConnection(DriverManager.java:215) at org.apache.sqoop.mapreduce.db.DBConfiguration.getConnection(DBConfiguration.java:302) at org.apache.sqoop.mapreduce.AsyncSqlRecordWriter.<init>(AsyncSqlRecordWriter.java:76) at org.apache.sqoop.mapreduce.ExportOutputFormat$ExportRecordWriter.<init>(ExportOutputFormat.java:95) at org.apache.sqoop.mapreduce.ExportOutputFormat.getRecordWriter(ExportOutputFormat.java:77) ... 8 more 14/12/01 15:17:40 INFO mapreduce.Job: map 100% reduce 0% 14/12/01 15:17:41 INFO mapreduce.Job: Job job_1406097234796_0021 completed successfully 14/12/01 15:17:41 INFO mapreduce.Job: Counters: 32 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=99542 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=139 HDFS: Number of bytes written=0 HDFS: Number of read operations=4 HDFS: Number of large read operations=0 HDFS: Number of write operations=0 Job Counters Failed map tasks=2 Launched map tasks=3 Other local map tasks=2 Rack-local map tasks=1 Total time spent by all maps in occupied slots (ms)=21200 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=21200 Total vcore-seconds taken by all map tasks=21200 Total megabyte-seconds taken by all map tasks=21708800 Map-Reduce Framework Map input records=2 Map output records=2 Input split bytes=120 Spilled Records=0 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=86 CPU time spent (ms)=1330 Physical memory (bytes) snapshot=177094656 Virtual memory (bytes) snapshot=686768128 Total committed heap usage (bytes)=148897792 File Input Format Counters Bytes Read=0 File Output Format Counters Bytes Written=0 14/12/01 15:17:41 INFO mapreduce.ExportJobBase: Transferred 139 bytes in 43.6687 seconds (3.1831 bytes/sec) 14/12/01 15:17:41 INFO mapreduce.ExportJobBase: Exported 2 records.
那一串异常我也不知道为什么会有?!反正最后去mysql看成功导出了2条数据
mysql> select * from employee; +----+---------+ | id | name | +----+---------+ | 1 | michael | | 2 | ted | +----+---------+ 2 rows in set (0.00 sec)
好,下课!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Dewu APP pada masa ini merupakan perisian beli-belah jenama yang sangat popular, tetapi kebanyakan pengguna tidak tahu cara menggunakan fungsi dalam APP Dewu Panduan tutorial penggunaan yang paling terperinci Seterusnya, editor membawakan Dewuduo kepada pengguna tutorial. Pengguna yang berminat boleh datang dan lihat! Tutorial cara menggunakan Dewu [2024-03-20] Cara menggunakan pembelian ansuran Dewu [2024-03-20] Cara mendapatkan kupon Dewu [2024-03-20] Cara mencari perkhidmatan pelanggan manual Dewu [2024-03- 20] Cara menyemak kod pikap Dewu【2024-03-20】Di mana hendak mencari pembelian Dewu【2024-03-20】Cara membuka VIP Dewu【2024-03-20】Cara memohon pemulangan atau pertukaran Dewi

Memasang aplikasi Android di Linux sentiasa menjadi kebimbangan ramai pengguna Terutamanya bagi pengguna Linux yang suka menggunakan aplikasi Android, adalah sangat penting untuk menguasai cara memasang aplikasi Android pada sistem Linux. Walaupun menjalankan aplikasi Android secara langsung pada Linux tidak semudah pada platform Android, dengan menggunakan emulator atau alatan pihak ketiga, kami masih boleh menikmati aplikasi Android di Linux dengan gembira. Berikut akan memperkenalkan cara memasang aplikasi Android pada sistem Linux.

Selepas hujan pada musim panas, anda sering dapat melihat pemandangan cuaca istimewa yang indah dan ajaib - pelangi. Ini juga merupakan pemandangan jarang yang boleh ditemui dalam fotografi, dan ia sangat fotogenik. Terdapat beberapa syarat untuk pelangi muncul: pertama, terdapat titisan air yang mencukupi di udara, dan kedua, matahari bersinar pada sudut yang lebih rendah. Oleh itu, adalah paling mudah untuk melihat pelangi pada sebelah petang selepas hujan reda. Walau bagaimanapun, pembentukan pelangi sangat dipengaruhi oleh cuaca, cahaya dan keadaan lain, jadi ia biasanya hanya bertahan untuk jangka masa yang singkat, dan masa tontonan dan penangkapan terbaik adalah lebih pendek. Jadi apabila anda menemui pelangi, bagaimanakah anda boleh merakamnya dengan betul dan mengambil gambar dengan kualiti? 1. Cari pelangi Selain keadaan yang dinyatakan di atas, pelangi biasanya muncul mengikut arah cahaya matahari, iaitu jika matahari bersinar dari barat ke timur, pelangi lebih cenderung muncul di timur.

Jika anda telah menggunakan Docker, anda mesti memahami daemon, bekas dan fungsinya. Daemon ialah perkhidmatan yang berjalan di latar belakang apabila bekas sudah digunakan dalam mana-mana sistem. Podman ialah alat pengurusan percuma untuk mengurus dan mencipta bekas tanpa bergantung pada mana-mana daemon seperti Docker. Oleh itu, ia mempunyai kelebihan dalam menguruskan kontena tanpa memerlukan perkhidmatan backend jangka panjang. Selain itu, Podman tidak memerlukan kebenaran peringkat akar untuk digunakan. Panduan ini membincangkan secara terperinci cara memasang Podman pada Ubuntu24. Untuk mengemas kini sistem, kami perlu mengemas kini sistem terlebih dahulu dan membuka shell Terminal Ubuntu24. Semasa kedua-dua proses pemasangan dan peningkatan, kita perlu menggunakan baris arahan. yang mudah

1. Mula-mula buka WeChat. 2. Klik [+] di penjuru kanan sebelah atas. 3. Klik kod QR untuk mengutip bayaran. 4. Klik tiga titik kecil di penjuru kanan sebelah atas. 5. Klik untuk menutup peringatan suara untuk ketibaan pembayaran.

Semasa belajar di sekolah menengah, sesetengah pelajar mengambil nota yang sangat jelas dan tepat, mengambil lebih banyak nota daripada yang lain dalam kelas yang sama. Bagi sesetengah orang, mencatat nota adalah hobi, manakala bagi yang lain, ia adalah satu keperluan apabila mereka mudah melupakan maklumat kecil tentang apa-apa perkara penting. Aplikasi NTFS Microsoft amat berguna untuk pelajar yang ingin menyimpan nota penting di luar kuliah biasa. Dalam artikel ini, kami akan menerangkan pemasangan aplikasi Ubuntu pada Ubuntu24. Mengemas kini Sistem Ubuntu Sebelum memasang pemasang Ubuntu, pada Ubuntu24 kita perlu memastikan bahawa sistem yang baru dikonfigurasikan telah dikemas kini. Kita boleh menggunakan "a" yang paling terkenal dalam sistem Ubuntu

Langkah terperinci untuk memasang bahasa Go pada komputer Win7 Go (juga dikenali sebagai Golang) ialah bahasa pengaturcaraan sumber terbuka yang dibangunkan oleh Google Ia mudah, cekap dan mempunyai prestasi serentak yang sangat baik Ia sesuai untuk pembangunan perkhidmatan awan, aplikasi rangkaian dan sistem hujung belakang. Memasang bahasa Go pada komputer Win7 membolehkan anda memulakan bahasa dengan cepat dan mula menulis program Go. Berikut akan memperkenalkan secara terperinci langkah-langkah untuk memasang bahasa Go pada komputer Win7, dan melampirkan contoh kod tertentu. Langkah 1: Muat turun pakej pemasangan bahasa Go dan lawati tapak web rasmi Go

PhotoshopCS ialah singkatan daripada Photoshop Creative Suite Ia adalah perisian yang dihasilkan oleh Adobe Ia digunakan secara meluas dalam reka bentuk grafik dan pemprosesan imej Sebagai seorang pelajar baru yang belajar PS, hari ini biarkan editor menerangkan kepada anda apa itu perisian photoshopcs5. . 1. Apakah perisian photoshop cs5? Adobe Photoshop CS5 Extended sesuai untuk profesional dalam bidang filem, video dan multimedia, pereka grafik dan web yang menggunakan 3D dan animasi, dan profesional dalam bidang kejuruteraan dan saintifik. Paparkan imej 3D dan cantumkannya menjadi imej komposit 2D. Edit video dengan mudah
