Rumah pangkalan data tutorial mysql T-SQL基础教程:集合理论

T-SQL基础教程:集合理论

Jun 07, 2016 pm 04:19 PM
Pangkalan Tutorial teori berkumpul

集合理论是由数学家Georg Cantor创建的,这是一个基于关系模型的数学分支。Cantor的集定义如下: 集合,我们的意思是:任意集合体M是我们感知或想到的,能够确定的、互异对象m(称之为M的元素)的整体。 ──Joseph W. Dauben和Georg Cantor(普林斯顿大学出版

   集合理论是由数学家Georg Cantor创建的,这是一个基于关系模型的数学分支。Cantor的集定义如下:

  集合,我们的意思是:任意集合体M是我们感知或想到的,能够确定的、互异对象m(称之为M的元素)的整体。

  ──Joseph W. Dauben和Georg Cantor(普林斯顿大学出版社,1990年)

  定义中的每个字都有着深刻和重要意义。集合定义和集合从属关系是无需证明的公理,宇宙中的每个元素要么是集合成员,要么不是集合成员。

  让我们从Cantor定义中的每个词开始。一个“集合”应将其视为单个实体,你的焦点应该放在对象的集合上,而不是组成集合的单个对象上。然后,当你对数据库中的表(如雇员表)编写T-SQL查询时,你应该将雇员的集合看作是一个整体,而不是单个的雇员。这听起来可能并不重要并且很简单,但显然很多程序员很难采用这种思维方式。

  “互异”这个词的含义是指集合中的每个元素必须是唯一的。跳跃到数据库中的表,你可以通过定义键约束来强制表中行的唯一性。没有键的话,你就不能唯一地标识行,因此表也就不能取得“集合”资格。相反,该表将是一个多重集合或是一个无序的单位组。

  “我们感知或想到的”这句话意味着集合的定义是主观的。思考一下教室:一个人可以被认为是“人”的集合,也有可能被认为是“学生”或“教师”的集合。因此,在定义集合方面你具有很大的自由度。当你为数据库设计数据模型时,设计过程应仔细考虑应用程序的主观需求,从而为相关实体确定恰当的定义。

  至于“对象”,,集合的定义不是限制为像汽车或雇员这样的物理对象,而是相关的抽象对象,如质数或线条。

  Cantor的集合定义省略掉的内容很可能像所包含的内容一样重要。请注意,定义中没有提到集合元素间的任何顺序,集合元素的列出顺序并不重要。列出集合元素的正式标记符号是使用大括号:{a、b、c}。因为与顺序无关,你可以使用{b, a, c}或{b, c, a}表示同一集合。跳跃到属性(SQL中称之为列)集合,它们组成了关系(SQL中称之为表)的表头,元素应该是按名称标识──而不是按顺序位置标识。

  同样,思考一下元组(SQL中称之为行)的设置,它们构成了关系的主体,元素由其键值进行标识,而不是按位置标识。许多程序员很难适应这种观念,对于查询表而言,行之间没有顺序。换句话说,对表的查询可以按任意顺序返回表中的行,除非你基于特定展现目的,明确要求数据以特定方式的进行排序。

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Menerobos sempadan pengesanan kecacatan tradisional, 'Spektrum Kecacatan' mencapai ketepatan ultra tinggi dan pengesanan kecacatan industri semantik yang kaya buat kali pertama. Menerobos sempadan pengesanan kecacatan tradisional, 'Spektrum Kecacatan' mencapai ketepatan ultra tinggi dan pengesanan kecacatan industri semantik yang kaya buat kali pertama. Jul 26, 2024 pm 05:38 PM

Dalam pembuatan moden, pengesanan kecacatan yang tepat bukan sahaja kunci untuk memastikan kualiti produk, tetapi juga teras untuk meningkatkan kecekapan pengeluaran. Walau bagaimanapun, set data pengesanan kecacatan sedia ada selalunya tidak mempunyai ketepatan dan kekayaan semantik yang diperlukan untuk aplikasi praktikal, menyebabkan model tidak dapat mengenal pasti kategori atau lokasi kecacatan tertentu. Untuk menyelesaikan masalah ini, pasukan penyelidik terkemuka yang terdiri daripada Universiti Sains dan Teknologi Hong Kong Guangzhou dan Teknologi Simou telah membangunkan set data "DefectSpectrum" secara inovatif, yang menyediakan anotasi berskala besar yang kaya dengan semantik bagi kecacatan industri. Seperti yang ditunjukkan dalam Jadual 1, berbanding set data industri lain, set data "DefectSpectrum" menyediakan anotasi kecacatan yang paling banyak (5438 sampel kecacatan) dan klasifikasi kecacatan yang paling terperinci (125 kategori kecacatan

Pada musim panas, anda mesti cuba menembak pelangi Pada musim panas, anda mesti cuba menembak pelangi Jul 21, 2024 pm 05:16 PM

Selepas hujan pada musim panas, anda sering dapat melihat pemandangan cuaca istimewa yang indah dan ajaib - pelangi. Ini juga merupakan pemandangan jarang yang boleh ditemui dalam fotografi, dan ia sangat fotogenik. Terdapat beberapa syarat untuk pelangi muncul: pertama, terdapat titisan air yang mencukupi di udara, dan kedua, matahari bersinar pada sudut yang lebih rendah. Oleh itu, adalah paling mudah untuk melihat pelangi pada sebelah petang selepas hujan reda. Walau bagaimanapun, pembentukan pelangi sangat dipengaruhi oleh cuaca, cahaya dan keadaan lain, jadi ia biasanya hanya bertahan untuk jangka masa yang singkat, dan masa tontonan dan penangkapan terbaik adalah lebih pendek. Jadi apabila anda menemui pelangi, bagaimanakah anda boleh merakamnya dengan betul dan mengambil gambar dengan kualiti? 1. Cari pelangi Selain keadaan yang dinyatakan di atas, pelangi biasanya muncul mengikut arah cahaya matahari, iaitu jika matahari bersinar dari barat ke timur, pelangi lebih cenderung muncul di timur.

Model dialog NVIDIA ChatQA telah berkembang kepada versi 2.0, dengan panjang konteks disebut pada 128K Model dialog NVIDIA ChatQA telah berkembang kepada versi 2.0, dengan panjang konteks disebut pada 128K Jul 26, 2024 am 08:40 AM

Komuniti LLM terbuka ialah era apabila seratus bunga mekar dan bersaing Anda boleh melihat Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 dan banyak lagi. model yang cemerlang. Walau bagaimanapun, berbanding dengan model besar proprietari yang diwakili oleh GPT-4-Turbo, model terbuka masih mempunyai jurang yang ketara dalam banyak bidang. Selain model umum, beberapa model terbuka yang mengkhusus dalam bidang utama telah dibangunkan, seperti DeepSeek-Coder-V2 untuk pengaturcaraan dan matematik, dan InternVL untuk tugasan bahasa visual.

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains Aug 08, 2024 pm 09:22 PM

Editor |KX Sehingga hari ini, perincian dan ketepatan struktur yang ditentukan oleh kristalografi, daripada logam ringkas kepada protein membran yang besar, tidak dapat ditandingi oleh mana-mana kaedah lain. Walau bagaimanapun, cabaran terbesar, yang dipanggil masalah fasa, kekal mendapatkan maklumat fasa daripada amplitud yang ditentukan secara eksperimen. Penyelidik di Universiti Copenhagen di Denmark telah membangunkan kaedah pembelajaran mendalam yang dipanggil PhAI untuk menyelesaikan masalah fasa kristal Rangkaian saraf pembelajaran mendalam yang dilatih menggunakan berjuta-juta struktur kristal tiruan dan data pembelauan sintetik yang sepadan boleh menghasilkan peta ketumpatan elektron yang tepat. Kajian menunjukkan bahawa kaedah penyelesaian struktur ab initio berasaskan pembelajaran mendalam ini boleh menyelesaikan masalah fasa pada resolusi hanya 2 Angstrom, yang bersamaan dengan hanya 10% hingga 20% daripada data yang tersedia pada resolusi atom, manakala Pengiraan ab initio tradisional

Google AI memenangi pingat perak IMO Mathematical Olympiad, model penaakulan matematik AlphaProof telah dilancarkan dan pembelajaran pengukuhan kembali Google AI memenangi pingat perak IMO Mathematical Olympiad, model penaakulan matematik AlphaProof telah dilancarkan dan pembelajaran pengukuhan kembali Jul 26, 2024 pm 02:40 PM

Bagi AI, Olimpik Matematik tidak lagi menjadi masalah. Pada hari Khamis, kecerdasan buatan Google DeepMind menyelesaikan satu kejayaan: menggunakan AI untuk menyelesaikan soalan sebenar IMO Olimpik Matematik Antarabangsa tahun ini, dan ia hanya selangkah lagi untuk memenangi pingat emas. Pertandingan IMO yang baru berakhir minggu lalu mempunyai enam soalan melibatkan algebra, kombinatorik, geometri dan teori nombor. Sistem AI hibrid yang dicadangkan oleh Google mendapat empat soalan dengan betul dan memperoleh 28 mata, mencapai tahap pingat perak. Awal bulan ini, profesor UCLA, Terence Tao baru sahaja mempromosikan Olimpik Matematik AI (Anugerah Kemajuan AIMO) dengan hadiah berjuta-juta dolar Tanpa diduga, tahap penyelesaian masalah AI telah meningkat ke tahap ini sebelum Julai. Lakukan soalan secara serentak pada IMO Perkara yang paling sukar untuk dilakukan dengan betul ialah IMO, yang mempunyai sejarah terpanjang, skala terbesar dan paling negatif

Pandangan alam semula jadi: Ujian kecerdasan buatan dalam perubatan berada dalam keadaan huru-hara Apa yang perlu dilakukan? Pandangan alam semula jadi: Ujian kecerdasan buatan dalam perubatan berada dalam keadaan huru-hara Apa yang perlu dilakukan? Aug 22, 2024 pm 04:37 PM

Editor |. ScienceAI Berdasarkan data klinikal yang terhad, beratus-ratus algoritma perubatan telah diluluskan. Para saintis sedang membahaskan siapa yang harus menguji alat dan cara terbaik untuk melakukannya. Devin Singh menyaksikan seorang pesakit kanak-kanak di bilik kecemasan mengalami serangan jantung semasa menunggu rawatan untuk masa yang lama, yang mendorongnya untuk meneroka aplikasi AI untuk memendekkan masa menunggu. Menggunakan data triage daripada bilik kecemasan SickKids, Singh dan rakan sekerja membina satu siri model AI untuk menyediakan potensi diagnosis dan mengesyorkan ujian. Satu kajian menunjukkan bahawa model ini boleh mempercepatkan lawatan doktor sebanyak 22.3%, mempercepatkan pemprosesan keputusan hampir 3 jam bagi setiap pesakit yang memerlukan ujian perubatan. Walau bagaimanapun, kejayaan algoritma kecerdasan buatan dalam penyelidikan hanya mengesahkan perkara ini

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

PRO |. Mengapa model besar berdasarkan MoE lebih patut diberi perhatian? PRO |. Mengapa model besar berdasarkan MoE lebih patut diberi perhatian? Aug 07, 2024 pm 07:08 PM

Pada tahun 2023, hampir setiap bidang AI berkembang pada kelajuan yang tidak pernah berlaku sebelum ini. Pada masa yang sama, AI sentiasa menolak sempadan teknologi trek utama seperti kecerdasan yang terkandung dan pemanduan autonomi. Di bawah trend berbilang modal, adakah status Transformer sebagai seni bina arus perdana model besar AI akan digoncang? Mengapakah penerokaan model besar berdasarkan seni bina MoE (Campuran Pakar) menjadi trend baharu dalam industri? Bolehkah Model Penglihatan Besar (LVM) menjadi satu kejayaan baharu dalam penglihatan umum? ...Daripada surat berita ahli PRO 2023 laman web ini yang dikeluarkan dalam tempoh enam bulan lalu, kami telah memilih 10 tafsiran khas yang menyediakan analisis mendalam tentang aliran teknologi dan perubahan industri dalam bidang di atas untuk membantu anda mencapai matlamat anda dalam bidang baharu. tahun. Tafsiran ini datang dari Week50 2023

See all articles