Javascript实现的常用算法(如冒泡、快速、鸽巢、奇偶等)_javascript技巧
l = [6, 2, 4, 1, 98, 34, 5, 9, 23, 8, 10, 32]
//冒泡排序
/*function bubbleSort(arr) {
newarr = arr.slice()
if (newarr.length for (var i = 0; i for (var j = 0; j if (newarr[j] > newarr[j + 1]) {
newarr[j] = [newarr[j + 1], newarr[j + 1] = newarr[j]][0]
}
}
}
return newarr
}
console.log(l)
result = bubbleSort(l)
console.log(result)*/
//快速排序
/*function quickSort(arr) {
if (arr.length var left = [],
right = [],
middle = [];
var mid = arr[Math.floor(arr.length / 2)]
for (var i = 0; i if (arr[i] left.push(arr[i]);
} else if (arr[i] > mid) {
right.push(arr[i]);
} else {
middle.push(mid);
}
}
return [].concat(quickSort(left), middle, quickSort(right))
}
var results = quickSort(l)
console.log(results)
*/
//选择排序
/*function selectSort(arr) {
var min = 9999,
minindex = 0;
var left = [],
right = arr.slice();
if (arr.length for (var i = 0; i if (arr[i] min = arr[i];
minindex = i;
}
}
left.push(min);
right.splice(minindex, 1);
return [].concat(left, selectSort(right))
}
var results = selectSort(l)
console.log(results)*/
//插入排序
/*function insertSort(arr) {
var tmp;
for (var i = 1; i tmp = arr[i];
for (var j = i; j > 0; j--) {
if (arr[j - 1] > tmp) {
arr[j] = arr[j - 1];
} else {
break;
}
}
arr[j] = tmp;
}
return arr;
}
var results = insertSort(l)
console.log(results)*/
//木桶排序
/*function bucketSort(arr){
var bucket = [];
var newarr = [];
for (var i = 0; i bucket[arr[i]] = arr[i];
}
for (var i = 0; i if (bucket[i] !== undefined){
newarr.push(bucket[i])
}
}
return newarr;
}
var results = bucketSort(l)
console.log(results)*/
//鸽巢排序,非负整数
/*function pigeonholeSort(arr){
var tempArr = [];
for(var i=0,l=arr.length;i
}
var result = [],count;
for(var k=0;k
if(count){
for(var i=0;i
}
}
}
return result;
}
var results = pigeonholeSort(l)
console.log(results)*/
//归并排序
/*function mergeSort(arr) {
if (arr.length var mid = Math.floor(arr.length / 2);
var left = MergeSort(arr.slice(0, mid));
var right = MergeSort(arr.slice(mid));
var result = [];
while (left.length && right.length) {
if (left[left.length - 1] result = result.concat(left);
left = [];
} else if (right[right.length - 1] result = result.concat(right);
right = [];
} else {
if (right[0] result.push(right.shift());
} else {
result.push(left.shift());
}
}
}
result = result.concat(left, right);
return result;
}*/
/*function mergeSort(arr) {
var merge = function(left, right) {
var result = [];
while (left.length > 0 && right.length > 0) {
if (left[0] result.push(left.shift());
} else {
result.push(right.shift());
}
}
return result.concat(left).concat(right);
}
if (arr.length == 1) return arr;
var middle = Math.floor(arr.length / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}
var results = mergeSort(l)
console.log(results)
*/
//堆排序
/*function heapSort(arr) {
var findRoot = function(arr, p, length) {
p = p || 0;
length = length || arr.length;
var self = arguments.callee;
var l = p * 2 + 1;
var r = (p + 1) * 2;
var left, right;
if (l if (r if (left > arr[p]) arr[p] = [left, arr[l] = arr[p]][0];
if (right > arr[p]) arr[p] = [right, arr[r] = arr[p]][0];
return arr[p];
};
for (var i = arr.length; i > 0; i--) {
findRoot(arr, 0, i);
arr[i - 1] = [arr[0], arr[0] = arr[i - 1]][0];
}
return arr;
}
var results = heapSort(l)
console.log(results)*/
//奇偶排列
/*function oddEvenSort(arr) {
var swaped = true,
k = 0;
while (swaped) {
if (k > 0) swaped = false;
for (var i = k; i if (arr[i]>arr[i+1]) {
arr[i] = [ arr[i+1], arr[i+1]=arr[i] ][0];
swaped = true;
}
}
k = [1, 0][k]
}
return arr;
}
var results = oddEvenSort(l)
console.log(results)*/
function oddEvenSort(arr) {
var swaped = true;
while (swaped) {
swaped = false;
for (var i = 0; i if (arr[i] > arr[i + 1]) {
arr[i] = [arr[i + 1], arr[i + 1] = arr[i]][0];
swaped = true;
}
}
for (var i = 1; i if (arr[i] > arr[i + 1]) {
arr[i] = [arr[i + 1], arr[i + 1] = arr[i]][0];
swaped = true;
}
}
}
return arr;
}
var results = oddEvenSort(l)
console.log(results)

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Ditulis di atas & pemahaman peribadi penulis: Pada masa ini, dalam keseluruhan sistem pemanduan autonomi, modul persepsi memainkan peranan penting Hanya selepas kenderaan pemanduan autonomi yang memandu di jalan raya memperoleh keputusan persepsi yang tepat melalui modul persepsi boleh Peraturan hiliran dan. modul kawalan dalam sistem pemanduan autonomi membuat pertimbangan dan keputusan tingkah laku yang tepat pada masanya dan betul. Pada masa ini, kereta dengan fungsi pemanduan autonomi biasanya dilengkapi dengan pelbagai penderia maklumat data termasuk penderia kamera pandangan sekeliling, penderia lidar dan penderia radar gelombang milimeter untuk mengumpul maklumat dalam modaliti yang berbeza untuk mencapai tugas persepsi yang tepat. Algoritma persepsi BEV berdasarkan penglihatan tulen digemari oleh industri kerana kos perkakasannya yang rendah dan penggunaan mudah, dan hasil keluarannya boleh digunakan dengan mudah untuk pelbagai tugas hiliran.

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lapisan bawah fungsi C++ sort menggunakan isihan gabungan, kerumitannya ialah O(nlogn), dan menyediakan pilihan algoritma pengisihan yang berbeza, termasuk isihan pantas, isihan timbunan dan isihan stabil.

Konvergensi kecerdasan buatan (AI) dan penguatkuasaan undang-undang membuka kemungkinan baharu untuk pencegahan dan pengesanan jenayah. Keupayaan ramalan kecerdasan buatan digunakan secara meluas dalam sistem seperti CrimeGPT (Teknologi Ramalan Jenayah) untuk meramal aktiviti jenayah. Artikel ini meneroka potensi kecerdasan buatan dalam ramalan jenayah, aplikasi semasanya, cabaran yang dihadapinya dan kemungkinan implikasi etika teknologi tersebut. Kecerdasan Buatan dan Ramalan Jenayah: Asas CrimeGPT menggunakan algoritma pembelajaran mesin untuk menganalisis set data yang besar, mengenal pasti corak yang boleh meramalkan di mana dan bila jenayah mungkin berlaku. Set data ini termasuk statistik jenayah sejarah, maklumat demografi, penunjuk ekonomi, corak cuaca dan banyak lagi. Dengan mengenal pasti trend yang mungkin terlepas oleh penganalisis manusia, kecerdasan buatan boleh memperkasakan agensi penguatkuasaan undang-undang

01Garis prospek Pada masa ini, sukar untuk mencapai keseimbangan yang sesuai antara kecekapan pengesanan dan hasil pengesanan. Kami telah membangunkan algoritma YOLOv5 yang dipertingkatkan untuk pengesanan sasaran dalam imej penderiaan jauh optik resolusi tinggi, menggunakan piramid ciri berbilang lapisan, strategi kepala pengesanan berbilang dan modul perhatian hibrid untuk meningkatkan kesan rangkaian pengesanan sasaran dalam imej penderiaan jauh optik. Menurut set data SIMD, peta algoritma baharu adalah 2.2% lebih baik daripada YOLOv5 dan 8.48% lebih baik daripada YOLOX, mencapai keseimbangan yang lebih baik antara hasil pengesanan dan kelajuan. 02 Latar Belakang & Motivasi Dengan perkembangan pesat teknologi penderiaan jauh, imej penderiaan jauh optik resolusi tinggi telah digunakan untuk menggambarkan banyak objek di permukaan bumi, termasuk pesawat, kereta, bangunan, dll. Pengesanan objek dalam tafsiran imej penderiaan jauh

Tutorial JavaScript: Bagaimana untuk mendapatkan kod status HTTP, contoh kod khusus diperlukan: Dalam pembangunan web, interaksi data dengan pelayan sering terlibat. Apabila berkomunikasi dengan pelayan, kami selalunya perlu mendapatkan kod status HTTP yang dikembalikan untuk menentukan sama ada operasi itu berjaya dan melaksanakan pemprosesan yang sepadan berdasarkan kod status yang berbeza. Artikel ini akan mengajar anda cara menggunakan JavaScript untuk mendapatkan kod status HTTP dan menyediakan beberapa contoh kod praktikal. Menggunakan XMLHttpRequest

1. Latar Belakang Pembinaan 58 Portrait Platform Pertama sekali, saya ingin berkongsi dengan anda latar belakang pembinaan 58 Portrait Platform. 1. Pemikiran tradisional platform pemprofilan tradisional tidak lagi mencukupi Membina platform pemprofilan pengguna bergantung pada keupayaan pemodelan gudang data untuk menyepadukan data daripada pelbagai barisan perniagaan untuk membina potret pengguna yang tepat untuk memahami tingkah laku, minat pengguna dan keperluan, dan menyediakan keupayaan sampingan, akhirnya, ia juga perlu mempunyai keupayaan platform data untuk menyimpan, bertanya dan berkongsi data profil pengguna dan menyediakan perkhidmatan profil dengan cekap. Perbezaan utama antara platform pemprofilan perniagaan binaan sendiri dan platform pemprofilan pejabat pertengahan ialah platform pemprofilan binaan sendiri menyediakan satu barisan perniagaan dan boleh disesuaikan atas permintaan platform pertengahan pejabat berkhidmat berbilang barisan perniagaan, mempunyai kompleks pemodelan, dan menyediakan lebih banyak keupayaan umum. 2.58 Potret pengguna latar belakang pembinaan potret di platform tengah 58

Ditulis di atas & Pemahaman peribadi penulis ialah dalam sistem pemanduan autonomi, tugas persepsi adalah komponen penting dalam keseluruhan sistem pemanduan autonomi. Matlamat utama tugas persepsi adalah untuk membolehkan kenderaan autonomi memahami dan melihat elemen persekitaran sekeliling, seperti kenderaan yang memandu di jalan raya, pejalan kaki di tepi jalan, halangan yang dihadapi semasa memandu, tanda lalu lintas di jalan raya, dan sebagainya, dengan itu membantu hiliran. modul Membuat keputusan dan tindakan yang betul dan munasabah. Kenderaan dengan keupayaan pemanduan autonomi biasanya dilengkapi dengan pelbagai jenis penderia pengumpulan maklumat, seperti penderia kamera pandangan sekeliling, penderia lidar, penderia radar gelombang milimeter, dsb., untuk memastikan kenderaan autonomi itu dapat melihat dan memahami persekitaran sekeliling dengan tepat. elemen , membolehkan kenderaan autonomi membuat keputusan yang betul semasa pemanduan autonomi. kepala
