Surviving Success at Matchbook: Using MMS To Track
This is a guest post from Jared Wyatt, CTO of Matchbook, an app for remembering the places you love and want to try. I joined Matchbook as CTO in January with the goal of breathing new life into an iOS app that had a small, but very devote
This is a guest post from Jared Wyatt, CTO of Matchbook, an app for remembering the places you love and want to try.
I joined Matchbook as CTO in January with the goal of breathing new life into an iOS app that had a small, but very devoted following. For various reasons, we decided to start fresh and rebuild everything from the ground up—this included completely revamping the app itself and totally redesigning our API and backend infrastructure. The old system was using MySQL as a datastore, but MongoDB seemed like a better fit for our needs because of its excellent geospatial support and the flexibility offered by its document-oriented data model.
We submitted Matchbook 2.0 to the App Store at the end of June and within a few days received an email from Apple requesting design assets because they wanted to feature our app. So, of course we were all, like, “OMG OMG OMG.”
An Influx of Users
We had originally planned for a quiet roll-out of version 2.0 because it was a completely new codebase and had not really been tested under load. However, our cautious reasoning was replaced by grandiose visions of fame and glory when Apple offered to feature us.
Matchbook 2.0 launched in the App Store on July 3rd. ?It was listed on the App Store home page under “New & Noteworthy” with top billing in the “Food & Drink” category. Within a week, we had onboarded tens of thousands of new users. Sweeet! It was high-fives all around until it suddenly wasn’t.
As our user base exploded, our application performance monitoring tool (New Relic) indicated massive amounts of time spent in the database during spikes of heavy user activity. Many, many milliseconds were being squandered somewhere in the ether while our API server was chatting with our MongoDB server. Support tickets and tweets started coming in about how much we sucked. We started freaking out (just a little) and began to rue the day we let Apple promote our app.
Monitoring to the Rescue
Prior to the launch, in addition to setting up New Relic to monitor our application, we set up MMS to monitor MongoDB. New Relic showed us that the performance issue was related to the database, but didn’t provide us with the detail necessary to determine what was causing the slowdown. So, I went to MMS. The first thing that caught my eye was the cursors chart. There were some freakish spikes in concurrently open cursors for the amount of activity on the database. So I says to myself, I says, “Jared, that seems sketchy, but why is it happening?”
I poked around in MMS a bit and noticed the profile data log—it was empty. At the risk of sounding like a n00b, I didn’t know what MongoDB profiling was, but it seemed like something I should look into. The MongoDB profile documentation indicates that level 1 profiles slow operations. Wait—did someone say slow operations? That’s me! I have slow operations! So, I hopped over to our database and said { profile: 1, slowms: 200 }.
Suddenly, query profiles started showing up in MMS and the universe began to make sense. We discovered that our ODM was running a lot of searches on indexed fields (which is good) using regular expressions instead of strings (which is bad for speediness). Upon further investigation, we found that this was happening because we had used the ODM to assign certain case-insensitive validations to some of the data models in our code. We made the appropriate changes and saw our performance issues immediately disappear. Our users were happy again.
Post Mortem
Although it caused big problems, this turned out to be a simple error with a simple fix. If not for MMS, the discovery could have been very time-intensive and stressful. It simply did not occur to us that our case-insensitive validations would cause the ODM to build queries with regular expressions and thus result in mad-crazy performance issues. Thanks to MMS, we got a clear picture of what went wrong, and it led us to implement a more efficient solution that gives us the case-insensitive validations we need without running regex searches in MongoDB.
It’s widely accepted that enterprise level systems need good monitoring tools because of their size and complexity, but the same need is often overlooked in tech startups. In today’s ecosystem where everyone is standing on the shoulders of dozens of 3rd-party libraries/frameworks/whatever to build a simple app, it’s often difficult to deduce where things might be going wrong. More than ever, the small, lean tech startups need tools that give us good insight so we can optimize performance and solve problems without expending too many of the precious few resources that we have.
Takeaways
- Set up monitoring. Visibility into your operations and interpreting the data correctly is your lifeline. Set up some custom dashboards in MMS for at-a-glance views of key metrics.
- Load test. Then load test some more and watch the data. You will see strange and wonderful things that you never thought possible when you watch how your application and database operations perform under load. Try to discover and fix some of these things before you launch. Load testing can also inform you about what specific metrics you should pay close attention to for your particular application.
- Set up performance alerts. Once you have a pretty good idea of which metrics you need to pay attention to, create alerts for when these data points approach unacceptable levels.
- Set up basic alerts for your server configuration, e.g. a replication lag alert for your replica set.
- Strike a ninja-like offensive pose when you launch. You never know what will happen and must be ready with cat-like reflexes.
Learn more about Matchbook at matchbook.co. We’re currently hiring designers and developers, so feel free to drop us a line at jobs@matchbook.co for more info.
原文地址:Surviving Success at Matchbook: Using MMS To Track, 感谢原作者分享。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Kaedah kejayaan dalam php digunakan untuk memaparkan mesej kejayaan Sintaks penggunaannya ialah "Success('...','Http://www.xxx.com/Admin/User/Index');", apabila kita melakukannya. tidak menulis Url, sistem akan menentukan sama ada terdapat halaman sebelumnya Jika ada sistem, ia akan melompat ke halaman sebelumnya, jika tidak, ia tidak akan melompat.

Dalam Laravel, kaedah kejayaan digunakan untuk mengembalikan respons yang berjaya dalam pengawal. Untuk menggunakan kaedah kejayaan, kita perlu memperkenalkan kelas Respons dalam pengawal Kemudian, kita boleh menggunakan contoh kelas ini untuk memanggil kaedah kejayaan. Anda boleh menetapkan mesej respons, data yang akan dikembalikan, kod status respons, dan menghantar parameter ini kepada kaedah kejayaan Respons yang berjaya akan dikembalikan, yang mengandungi mesej dan data pengguna yang kami tetapkan.

Tidak lama selepas Tesla melancarkan penyegaran Model 3 Highland menjelang penghujung tahun lepas, peraturan insentif cukai EV persekutuan AS berubah, memotong separuh potensi diskaun untuk pembeli yang layak kerana Tesla menggunakan sel LFP Cina dalam M baharu

Akaun antivirus Kaspersky AS telah dijual kepada UltraAV, bahagian Kumpulan Pango. Pango baru-baru ini telah dipisahkan daripada Aura, sebuah syarikat keselamatan yang diasaskan oleh Ketua Pegawai Eksekutif Hari Ravichandran. Kaspersky terpaksa meninggalkan pasaran AS selepas diharamkan oleh

Gate.io Exchange adalah salah satu platform perdagangan cryptocurrency terkemuka di dunia. Panduan ini menyediakan tutorial langkah demi langkah untuk membantu pengguna mendaftar dan berdagang dengan Gate.io. Proses pendaftaran termasuk memilih kaedah pendaftaran (telefon, e -mel atau akaun sosial), mengisi maklumat, menetapkan kata laluan masuk, dan menyelesaikan pengesahan identiti. Tutorial perdagangan termasuk mengakses halaman dagangan, memilih pasangan dagangan, memasukkan maklumat perdagangan, meletakkan pesanan, dan melihat status pesanan. Dengan bimbingan artikel ini, pengguna dengan mudah boleh memulakan perdagangan cryptocurrency di Gate.io.

Samsung Galaxy S24 FE setakat ini telah muncul dalam beberapa kebocoran dan khabar angin yang semuanya mencadangkan ia akan menjadi pembunuh utama yang cekap dengan pemproses yang dikemas kini, paparan yang lebih besar dan lebih banyak RAM. Walau bagaimanapun, kebocoran baru dari OnLeaks mendedahkan bahawa S24 F

B3 Coin: Ekosistem permainan blockchain yang cekap dan murah dan panduan pembelian permainan blockchain telah lama dibatasi oleh isu-isu seperti skalabilitas dan kelajuan transaksi. Projek B3 dibina di atas asas, menyediakan pengembangan ekosistem permainan yang cekap, kos rendah dan pemaju yang mesra. Artikel ini akan memperkenalkan platform perdagangan dan kaedah pembelian duit syiling B3 secara terperinci. Platform perdagangan duit syiling B3 Pada masa ini, B3 Coin telah melancarkan pelbagai platform perdagangan arus perdana, termasuk Coinbasepro, Gate.io, Mexc, Bybit dan Coinw. Platform ini mempunyai ciri -ciri mereka sendiri, dan pelabur boleh memilih mengikut keperluan mereka sendiri: Coinbasepro:

Untuk mempelajari amalan terbaik untuk kaedah kejayaan dalam PHP, contoh kod khusus diperlukan PHP ialah bahasa skrip sebelah pelayan yang popular yang digunakan secara meluas dalam bidang pembangunan web. Dalam PHP, kaedah kejayaan ialah kaedah biasa yang digunakan untuk menentukan sama ada operasi berjaya atau tidak, dan biasanya digunakan untuk mengembalikan mesej atau kod kejayaan. Untuk mempelajari amalan terbaik untuk kaedah kejayaan dalam PHP, anda perlu menunjukkan dan menerangkannya dengan contoh kod sebenar. Mula-mula, mari kita lihat contoh mudah yang menunjukkan kejayaan yang berjaya
