Rumah pangkalan data tutorial mysql Sqoop安装配置及演示

Sqoop安装配置及演示

Jun 07, 2016 pm 04:34 PM
Pasang Demo Konfigurasi

Sqoop是一个用来将Hadoop(Hive、HBase)和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如:MySQL ,Oracle ,Postgres等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导入到关系型数据库中。Sqoop目前已经是Apache的顶级项目了,

Sqoop是一个用来将Hadoop(Hive、HBase)和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如:MySQL ,Oracle ,Postgres等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导入到关系型数据库中。 Sqoop目前已经是Apache的顶级项目了,目前版本是1.4.4 和 Sqoop2 1.99.3,本文以1.4.4的版本为例讲解基本的安装配置和简单应用的演示。
  • 安装配置
  • 准备测试数据
  • 导入数据到HDFS
  • 导入数据到Hive
  • 导入数据到HBase
[一]、安装配置 选择Sqoop 1.4.4 版本:sqoop-1.4.4.bin__hadoop-2.0.4-alpha.tar.gz 1.1、下载后解压配置:
tar -zxvf sqoop-1.4.4.bin__hadoop-2.0.4-alpha.tar.gz /usr/local/
cd /usr/local
ln -s sqoop-1.4.4.bin__hadoop-2.0.4-alpha sqoop
Salin selepas log masuk
1.2、环境变量配置 vi ~/.bash_profile
#Sqoop  add by micmiu.com
export SQOOP_HOME=/usr/local/sqoop
export PATH=$SQOOP_HOME/bin:$PATH
Salin selepas log masuk
1.3、配置Sqoop参数: 复制/conf/sqoop-env-template.sh 一份重命名为:/conf/sqoop-env.sh vi ?<sqoop_home>/conf/sqoop-env.sh</sqoop_home>
# 指定各环境变量的实际配置
# Set Hadoop-specific environment variables here.
#Set path to where bin/hadoop is available
#export HADOOP_COMMON_HOME=
#Set path to where hadoop-*-core.jar is available
#export HADOOP_MAPRED_HOME=
#set the path to where bin/hbase is available
#export HBASE_HOME=
#Set the path to where bin/hive is available
#export HIVE_HOME=
Salin selepas log masuk
ps:因为我当前用户的默认环境变量中已经配置了相关变量,故该配置文件无需再修改:
# Hadoop  
export HADOOP_PREFIX="/usr/local/hadoop"  
export HADOOP_HOME=${HADOOP_PREFIX}  
export PATH=$PATH:$HADOOP_PREFIX/bin:$HADOOP_PREFIX/sbin
export HADOOP_COMMON_HOME=${HADOOP_PREFIX}  
export HADOOP_HDFS_HOME=${HADOOP_PREFIX}  
export HADOOP_MAPRED_HOME=${HADOOP_PREFIX}
export HADOOP_YARN_HOME=${HADOOP_PREFIX}  
# Native Path  
export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_PREFIX}/lib/native  
export HADOOP_OPTS="-Djava.library.path=$HADOOP_PREFIX/lib/native" 
# Hadoop end
#Hive
export HIVE_HOME=/usr/local/hive
export PATH=$HIVE_HOME/bin:$PATH
#HBase
export HBASE_HOME=/usr/local/hbase
export PATH=$HBASE
#add by micmiu.com
Salin selepas log masuk
1.4、驱动jar包 下面测试演示以MySQL为例,则需要把mysql对应的驱动lib文件copy到 <sqoop_home>/lib</sqoop_home> 目录下。 [二]、测试数据准备 以MySQL 为例:
  • 192.168.6.77(hostname:Master.Hadoop)
  • database: test
  • 用户:root 密码:micmiu
准备两张测试表一个有主键表demo_blog,一个无主键表 demo_log
CREATE TABLE `demo_blog` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `blog` varchar(100) NOT NULL,
  PRIMARY KEY (`id`)
) ENGINE=MyISAM  DEFAULT CHARSET=utf8;
Salin selepas log masuk
CREATE TABLE `demo_log` (
  `operator` varchar(16) NOT NULL,
  `log` varchar(100) NOT NULL
) ENGINE=MyISAM  DEFAULT CHARSET=utf8;
Salin selepas log masuk
插入测试数据:
insert into demo_blog (id, blog) values (1, "micmiu.com");
insert into demo_blog (id, blog) values (2, "ctosun.com");
insert into demo_blog (id, blog) values (3, "baby.micmiu.com");
insert into demo_log (operator, log) values ("micmiu", "create");
insert into demo_log (operator, log) values ("micmiu", "update");
insert into demo_log (operator, log) values ("michael", "edit");
insert into demo_log (operator, log) values ("michael", "delete");
Salin selepas log masuk
[三]、导入数据到HDFS 3.1、导入有主键的表 比如我需要把表 demo_blog (含主键) 的数据导入到HDFS中,执行如下命令:
sqoop import --connect jdbc:mysql://192.168.6.77/test --username root --password micmiu --table demo_blog
Salin selepas log masuk
执行过程如下:
$ sqoop import --connect jdbc:mysql://192.168.6.77/test --username root --password micmiu --table demo_blog
Warning: /usr/lib/hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
14/04/09 09:58:43 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
14/04/09 09:58:43 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/04/09 09:58:43 INFO tool.CodeGenTool: Beginning code generation
14/04/09 09:58:43 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_blog` AS t LIMIT 1
14/04/09 09:58:43 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_blog` AS t LIMIT 1
14/04/09 09:58:43 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/local/hadoop
Note: /tmp/sqoop-hadoop/compile/e8fd26a5bca5b7f51cdb03bf847ce389/demo_blog.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
14/04/09 09:58:44 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/e8fd26a5bca5b7f51cdb03bf847ce389/demo_blog.jar
14/04/09 09:58:44 WARN manager.MySQLManager: It looks like you are importing from mysql.
14/04/09 09:58:44 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
14/04/09 09:58:44 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
14/04/09 09:58:44 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
14/04/09 09:58:44 INFO mapreduce.ImportJobBase: Beginning import of demo_blog
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hbase-0.98.0-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/04/09 09:58:44 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/04/09 09:58:45 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/04/09 09:58:45 INFO client.RMProxy: Connecting to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/04/09 09:58:47 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`id`), MAX(`id`) FROM `demo_blog`
14/04/09 09:58:47 INFO mapreduce.JobSubmitter: number of splits:3
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.job.classpath.files is deprecated. Instead, use mapreduce.job.classpath.files
14/04/09 09:58:47 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.cache.files.filesizes is deprecated. Instead, use mapreduce.job.cache.files.filesizes
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.cache.files is deprecated. Instead, use mapreduce.job.cache.files
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/04/09 09:58:47 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/04/09 09:58:47 INFO Configuration.deprecation: mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
14/04/09 09:58:47 INFO Configuration.deprecation: mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.cache.files.timestamps is deprecated. Instead, use mapreduce.job.cache.files.timestamps
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/04/09 09:58:47 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/04/09 09:58:47 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1396936838233_0001
14/04/09 09:58:47 INFO impl.YarnClientImpl: Submitted application application_1396936838233_0001 to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/04/09 09:58:47 INFO mapreduce.Job: The url to track the job: http://Master.Hadoop:8088/proxy/application_1396936838233_0001/
14/04/09 09:58:47 INFO mapreduce.Job: Running job: job_1396936838233_0001
14/04/09 09:59:00 INFO mapreduce.Job: Job job_1396936838233_0001 running in uber mode : false
14/04/09 09:59:00 INFO mapreduce.Job:  map 0% reduce 0%
14/04/09 09:59:14 INFO mapreduce.Job:  map 33% reduce 0%
14/04/09 09:59:16 INFO mapreduce.Job:  map 67% reduce 0%
14/04/09 09:59:19 INFO mapreduce.Job:  map 100% reduce 0%
14/04/09 09:59:19 INFO mapreduce.Job: Job job_1396936838233_0001 completed successfully
14/04/09 09:59:19 INFO mapreduce.Job: Counters: 27
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=271866
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=295
		HDFS: Number of bytes written=44
		HDFS: Number of read operations=12
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=6
	Job Counters 
		Launched map tasks=3
		Other local map tasks=3
		Total time spent by all maps in occupied slots (ms)=43032
		Total time spent by all reduces in occupied slots (ms)=0
	Map-Reduce Framework
		Map input records=3
		Map output records=3
		Input split bytes=295
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=590
		CPU time spent (ms)=6330
		Physical memory (bytes) snapshot=440934400
		Virtual memory (bytes) snapshot=3882573824
		Total committed heap usage (bytes)=160563200
	File Input Format Counters 
		Bytes Read=0
	File Output Format Counters 
		Bytes Written=44
14/04/09 09:59:19 INFO mapreduce.ImportJobBase: Transferred 44 bytes in 34.454 seconds (1.2771 bytes/sec)
14/04/09 09:59:19 INFO mapreduce.ImportJobBase: Retrieved 3 records.
Salin selepas log masuk
验证导入到hdfs上的数据:
$ hdfs dfs -ls /user/hadoop/demo_blog
Found 4 items
-rw-r--r--   3 hadoop supergroup          0 2014-04-09 09:59 /user/hadoop/demo_blog/_SUCCESS
-rw-r--r--   3 hadoop supergroup         13 2014-04-09 09:59 /user/hadoop/demo_blog/part-m-00000
-rw-r--r--   3 hadoop supergroup         13 2014-04-09 09:59 /user/hadoop/demo_blog/part-m-00001
-rw-r--r--   3 hadoop supergroup         18 2014-04-09 09:59 /user/hadoop/demo_blog/part-m-00002
[hadoop@Master ~]$ hdfs dfs -cat /user/hadoop/demo_blog/part-m-0000*
1,micmiu.com
2,ctosun.com
3,baby.micmiu.com
Salin selepas log masuk
ps:默认设置下导入到hdfs上的路径是:?/user/username/tablename/(files),比如我的当前用户是hadoop,那么实际路径即:?/user/hadoop/demo_blog/(files)。 如果要自定义路径需要增加参数:--warehouse-dir 比如:
sqoop import --connect jdbc:mysql://Master.Hadoop/test --username root --password micmiu --table demo_blog --warehouse-dir /user/micmiu/sqoop
Salin selepas log masuk
3.2、导入不含主键的表 比如需要把表 demo_log(无主键) 的数据导入到hdfs中,执行如下命令:
sqoop import --connect jdbc:mysql://192.168.6.77/test --username root --password micmiu --table demo_log --warehouse-dir /user/micmiu/sqoop --split-by operator
Salin selepas log masuk
ps:无主键表的导入需要增加参数? --split-by xxx ?或者 -m 1 执行过程:
$ sqoop import --connect jdbc:mysql://192.168.6.77/test --username root --password micmiu --table demo_log --warehouse-dir /user/micmiu/sqoop --split-by operator
Warning: /usr/lib/hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
14/04/09 15:02:06 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
14/04/09 15:02:06 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/04/09 15:02:06 INFO tool.CodeGenTool: Beginning code generation
14/04/09 15:02:06 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_log` AS t LIMIT 1
14/04/09 15:02:06 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_log` AS t LIMIT 1
14/04/09 15:02:06 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/local/hadoop
Note: /tmp/sqoop-hadoop/compile/dddc1bcdba30515f95a2d604f22e4fe9/demo_log.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
14/04/09 15:02:07 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/dddc1bcdba30515f95a2d604f22e4fe9/demo_log.jar
14/04/09 15:02:07 WARN manager.MySQLManager: It looks like you are importing from mysql.
14/04/09 15:02:07 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
14/04/09 15:02:07 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
14/04/09 15:02:07 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
14/04/09 15:02:07 INFO mapreduce.ImportJobBase: Beginning import of demo_log
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hbase-0.98.0-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/04/09 15:02:07 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/04/09 15:02:08 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/04/09 15:02:08 INFO client.RMProxy: Connecting to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/04/09 15:02:10 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`operator`), MAX(`operator`) FROM `demo_log`
14/04/09 15:02:10 WARN db.TextSplitter: Generating splits for a textual index column.
14/04/09 15:02:10 WARN db.TextSplitter: If your database sorts in a case-insensitive order, this may result in a partial import or duplicate records.
14/04/09 15:02:10 WARN db.TextSplitter: You are strongly encouraged to choose an integral split column.
14/04/09 15:02:10 INFO mapreduce.JobSubmitter: number of splits:4
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.job.classpath.files is deprecated. Instead, use mapreduce.job.classpath.files
14/04/09 15:02:10 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.cache.files.filesizes is deprecated. Instead, use mapreduce.job.cache.files.filesizes
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.cache.files is deprecated. Instead, use mapreduce.job.cache.files
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/04/09 15:02:10 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/04/09 15:02:10 INFO Configuration.deprecation: mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
14/04/09 15:02:10 INFO Configuration.deprecation: mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.cache.files.timestamps is deprecated. Instead, use mapreduce.job.cache.files.timestamps
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/04/09 15:02:10 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/04/09 15:02:10 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1396936838233_0003
14/04/09 15:02:10 INFO impl.YarnClientImpl: Submitted application application_1396936838233_0003 to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/04/09 15:02:10 INFO mapreduce.Job: The url to track the job: http://Master.Hadoop:8088/proxy/application_1396936838233_0003/
14/04/09 15:02:10 INFO mapreduce.Job: Running job: job_1396936838233_0003
14/04/09 15:02:17 INFO mapreduce.Job: Job job_1396936838233_0003 running in uber mode : false
14/04/09 15:02:17 INFO mapreduce.Job:  map 0% reduce 0%
14/04/09 15:02:28 INFO mapreduce.Job:  map 25% reduce 0%
14/04/09 15:02:30 INFO mapreduce.Job:  map 50% reduce 0%
14/04/09 15:02:33 INFO mapreduce.Job:  map 100% reduce 0%
14/04/09 15:02:33 INFO mapreduce.Job: Job job_1396936838233_0003 completed successfully
14/04/09 15:02:33 INFO mapreduce.Job: Counters: 27
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=362536
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=516
		HDFS: Number of bytes written=56
		HDFS: Number of read operations=16
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=8
	Job Counters 
		Launched map tasks=4
		Other local map tasks=4
		Total time spent by all maps in occupied slots (ms)=44481
		Total time spent by all reduces in occupied slots (ms)=0
	Map-Reduce Framework
		Map input records=4
		Map output records=4
		Input split bytes=516
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=429
		CPU time spent (ms)=6650
		Physical memory (bytes) snapshot=587669504
		Virtual memory (bytes) snapshot=5219356672
		Total committed heap usage (bytes)=205848576
	File Input Format Counters 
		Bytes Read=0
	File Output Format Counters 
		Bytes Written=56
14/04/09 15:02:33 INFO mapreduce.ImportJobBase: Transferred 56 bytes in 25.2746 seconds (2.2157 bytes/sec)
14/04/09 15:02:33 INFO mapreduce.ImportJobBase: Retrieved 4 records.
Salin selepas log masuk
验证导入的数据:
$ hdfs dfs -ls /user/micmiu/sqoop/demo_log
Found 5 items
-rw-r--r--   3 hadoop supergroup          0 2014-04-09 15:02 /user/micmiu/sqoop/demo_log/_SUCCESS
-rw-r--r--   3 hadoop supergroup         28 2014-04-09 15:02 /user/micmiu/sqoop/demo_log/part-m-00000
-rw-r--r--   3 hadoop supergroup          0 2014-04-09 15:02 /user/micmiu/sqoop/demo_log/part-m-00001
-rw-r--r--   3 hadoop supergroup          0 2014-04-09 15:02 /user/micmiu/sqoop/demo_log/part-m-00002
-rw-r--r--   3 hadoop supergroup         28 2014-04-09 15:02 /user/micmiu/sqoop/demo_log/part-m-00003
$ hdfs dfs -cat /user/micmiu/sqoop/demo_log/part-m-0000*
michael,edit
michael,delete
micmiu,create
micmiu,update
Salin selepas log masuk
[四]、导入数据到Hive 比如把表demo_blog 数据导入到Hive中,增加参数 --hive-import?:
sqoop import --connect jdbc:mysql://192.168.6.77/test --username root --password micmiu --table demo_blog  --warehouse-dir /user/sqoop --hive-import --create-hive-table
Salin selepas log masuk
执行过程如下:
$ sqoop import --connect jdbc:mysql://192.168.6.77/test --username root --password micmiu --table demo_blog  --warehouse-dir /user/sqoop --hive-import --create-hive-table 
Warning: /usr/lib/hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
14/04/09 10:44:21 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
14/04/09 10:44:21 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
14/04/09 10:44:21 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
14/04/09 10:44:21 WARN tool.BaseSqoopTool: It seems that you've specified at least one of following:
14/04/09 10:44:21 WARN tool.BaseSqoopTool: 	--hive-home
14/04/09 10:44:21 WARN tool.BaseSqoopTool: 	--hive-overwrite
14/04/09 10:44:21 WARN tool.BaseSqoopTool: 	--create-hive-table
14/04/09 10:44:21 WARN tool.BaseSqoopTool: 	--hive-table
14/04/09 10:44:21 WARN tool.BaseSqoopTool: 	--hive-partition-key
14/04/09 10:44:21 WARN tool.BaseSqoopTool: 	--hive-partition-value
14/04/09 10:44:21 WARN tool.BaseSqoopTool: 	--map-column-hive
14/04/09 10:44:21 WARN tool.BaseSqoopTool: Without specifying parameter --hive-import. Please note that
14/04/09 10:44:21 WARN tool.BaseSqoopTool: those arguments will not be used in this session. Either
14/04/09 10:44:21 WARN tool.BaseSqoopTool: specify --hive-import to apply them correctly or remove them
14/04/09 10:44:21 WARN tool.BaseSqoopTool: from command line to remove this warning.
14/04/09 10:44:21 INFO tool.BaseSqoopTool: Please note that --hive-home, --hive-partition-key, 
14/04/09 10:44:21 INFO tool.BaseSqoopTool: 	 hive-partition-value and --map-column-hive options are 
14/04/09 10:44:21 INFO tool.BaseSqoopTool: 	 are also valid for HCatalog imports and exports
14/04/09 10:44:21 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/04/09 10:44:21 INFO tool.CodeGenTool: Beginning code generation
14/04/09 10:44:21 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_blog` AS t LIMIT 1
14/04/09 10:44:21 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_blog` AS t LIMIT 1
14/04/09 10:44:21 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/local/hadoop
Note: /tmp/sqoop-hadoop/compile/c071f02ecad006293202fd2c2fad0dce/demo_blog.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
14/04/09 10:44:22 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/c071f02ecad006293202fd2c2fad0dce/demo_blog.jar
14/04/09 10:44:22 WARN manager.MySQLManager: It looks like you are importing from mysql.
14/04/09 10:44:22 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
14/04/09 10:44:22 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
14/04/09 10:44:22 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
14/04/09 10:44:22 INFO mapreduce.ImportJobBase: Beginning import of demo_blog
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hbase-0.98.0-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/04/09 10:44:22 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/04/09 10:44:23 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/04/09 10:44:23 INFO client.RMProxy: Connecting to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/04/09 10:44:25 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`id`), MAX(`id`) FROM `demo_blog`
14/04/09 10:44:25 INFO mapreduce.JobSubmitter: number of splits:3
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.job.classpath.files is deprecated. Instead, use mapreduce.job.classpath.files
14/04/09 10:44:25 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.cache.files.filesizes is deprecated. Instead, use mapreduce.job.cache.files.filesizes
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.cache.files is deprecated. Instead, use mapreduce.job.cache.files
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/04/09 10:44:25 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/04/09 10:44:25 INFO Configuration.deprecation: mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
14/04/09 10:44:25 INFO Configuration.deprecation: mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.cache.files.timestamps is deprecated. Instead, use mapreduce.job.cache.files.timestamps
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/04/09 10:44:25 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/04/09 10:44:25 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1396936838233_0002
14/04/09 10:44:25 INFO impl.YarnClientImpl: Submitted application application_1396936838233_0002 to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/04/09 10:44:25 INFO mapreduce.Job: The url to track the job: http://Master.Hadoop:8088/proxy/application_1396936838233_0002/
14/04/09 10:44:25 INFO mapreduce.Job: Running job: job_1396936838233_0002
14/04/09 10:44:33 INFO mapreduce.Job: Job job_1396936838233_0002 running in uber mode : false
14/04/09 10:44:33 INFO mapreduce.Job:  map 0% reduce 0%
14/04/09 10:44:46 INFO mapreduce.Job:  map 67% reduce 0%
14/04/09 10:44:48 INFO mapreduce.Job:  map 100% reduce 0%
14/04/09 10:44:49 INFO mapreduce.Job: Job job_1396936838233_0002 completed successfully
14/04/09 10:44:49 INFO mapreduce.Job: Counters: 27
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=271860
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=295
		HDFS: Number of bytes written=44
		HDFS: Number of read operations=12
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=6
	Job Counters 
		Launched map tasks=3
		Other local map tasks=3
		Total time spent by all maps in occupied slots (ms)=34047
		Total time spent by all reduces in occupied slots (ms)=0
	Map-Reduce Framework
		Map input records=3
		Map output records=3
		Input split bytes=295
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=505
		CPU time spent (ms)=5350
		Physical memory (bytes) snapshot=427388928
		Virtual memory (bytes) snapshot=3881439232
		Total committed heap usage (bytes)=171638784
	File Input Format Counters 
		Bytes Read=0
	File Output Format Counters 
		Bytes Written=44
14/04/09 10:44:49 INFO mapreduce.ImportJobBase: Transferred 44 bytes in 26.0401 seconds (1.6897 bytes/sec)
14/04/09 10:44:49 INFO mapreduce.ImportJobBase: Retrieved 3 records.
14/04/09 10:44:49 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_blog` AS t LIMIT 1
14/04/09 10:44:49 INFO hive.HiveImport: Loading uploaded data into Hive
14/04/09 10:44:52 INFO hive.HiveImport: 14/04/09 10:44:52 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/04/09 10:44:52 INFO hive.HiveImport: 14/04/09 10:44:52 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/04/09 10:44:52 INFO hive.HiveImport: 14/04/09 10:44:52 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
14/04/09 10:44:52 INFO hive.HiveImport: 14/04/09 10:44:52 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/04/09 10:44:52 INFO hive.HiveImport: 14/04/09 10:44:52 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/04/09 10:44:52 INFO hive.HiveImport: 14/04/09 10:44:52 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/04/09 10:44:52 INFO hive.HiveImport: 14/04/09 10:44:52 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/04/09 10:44:52 INFO hive.HiveImport: 14/04/09 10:44:52 INFO Configuration.deprecation: mapred.committer.job.setup.cleanup.needed is deprecated. Instead, use mapreduce.job.committer.setup.cleanup.needed
14/04/09 10:44:53 INFO hive.HiveImport: 14/04/09 10:44:53 WARN conf.HiveConf: DEPRECATED: hive.metastore.ds.retry.* no longer has any effect.  Use hive.hmshandler.retry.* instead
14/04/09 10:44:53 INFO hive.HiveImport: 
14/04/09 10:44:53 INFO hive.HiveImport: Logging initialized using configuration in file:/usr/local/hive-0.13.0-bin/conf/hive-log4j.properties
14/04/09 10:44:53 INFO hive.HiveImport: SLF4J: Class path contains multiple SLF4J bindings.
14/04/09 10:44:53 INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
14/04/09 10:44:53 INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/usr/local/hbase-0.98.0-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
14/04/09 10:44:53 INFO hive.HiveImport: SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
14/04/09 10:44:53 INFO hive.HiveImport: SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/04/09 10:44:57 INFO hive.HiveImport: OK
14/04/09 10:44:57 INFO hive.HiveImport: Time taken: 0.773 seconds
14/04/09 10:44:57 INFO hive.HiveImport: Loading data to table default.demo_blog
14/04/09 10:44:57 INFO hive.HiveImport: Table default.demo_blog stats: [numFiles=4, numRows=0, totalSize=44, rawDataSize=0]
14/04/09 10:44:57 INFO hive.HiveImport: OK
14/04/09 10:44:57 INFO hive.HiveImport: Time taken: 0.25 seconds
14/04/09 10:44:57 INFO hive.HiveImport: Hive import complete.
14/04/09 10:44:57 INFO hive.HiveImport: Export directory is empty, removing it
Salin selepas log masuk
Hive CLI中验证导入的数据:
hive> show tables;
OK
demo_blog
hbase_table_1
hbase_table_2
hbase_table_3
micmiu_blog
micmiu_hx_master
pokes
xflow_dstip
Time taken: 0.073 seconds, Fetched: 8 row(s)
hive> select * from demo_blog;
OK
1	micmiu.com
2	ctosun.com
3	baby.micmiu.com
Time taken: 0.506 seconds, Fetched: 3 row(s)
Salin selepas log masuk
[五]、导入数据到HBase 演示把表 demo_blog 数据导入到HBase ,指定Hbase中表名为 demo_sqoop2hbase 的命令:
sqoop  import  --connect jdbc:mysql://192.168.6.77/test --username root --password micmiu --table demo_blog --hbase-table demo_sqoop2hbase --hbase-create-table --hbase-row-key id --column-family url
Salin selepas log masuk
执行过程:
$ sqoop  import  --connect jdbc:mysql://192.168.6.77/test --username root --password micmiu --table demo_blog --hbase-table demo_sqoop2hbase --hbase-create-table --hbase-row-key id --column-family url
Warning: /usr/lib/hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
14/04/09 16:23:38 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
14/04/09 16:23:38 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/04/09 16:23:38 INFO tool.CodeGenTool: Beginning code generation
14/04/09 16:23:39 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_blog` AS t LIMIT 1
14/04/09 16:23:39 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `demo_blog` AS t LIMIT 1
14/04/09 16:23:39 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/local/hadoop
Note: /tmp/sqoop-hadoop/compile/85408c854ee8fba75bbb2458e5e25093/demo_blog.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
14/04/09 16:23:40 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/85408c854ee8fba75bbb2458e5e25093/demo_blog.jar
14/04/09 16:23:40 WARN manager.MySQLManager: It looks like you are importing from mysql.
14/04/09 16:23:40 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
14/04/09 16:23:40 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
14/04/09 16:23:40 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
14/04/09 16:23:40 INFO mapreduce.ImportJobBase: Beginning import of demo_blog
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hbase-0.98.0-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/04/09 16:23:40 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/04/09 16:23:40 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:zookeeper.version=3.4.5-1392090, built on 09/30/2012 17:52 GMT
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:host.name=Master.Hadoop
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:java.version=1.6.0_20
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:java.vendor=Sun Microsystems Inc.
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:java.home=/java/jdk1.6.0_20/jre
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:java.class.path=/usr/local/hadoop/etc/hadoop: .......
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:java.library.path=/usr/local/hadoop/lib/native
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:java.io.tmpdir=/tmp
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:java.compiler=
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:os.name=Linux
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:os.arch=amd64
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:os.version=2.6.32-71.el6.x86_64
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:user.name=hadoop
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:user.home=/home/hadoop
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Client environment:user.dir=/home/hadoop
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Initiating client connection, connectString=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181 sessionTimeout=90000 watcher=hconnection-0x57c8b24d, quorum=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181, baseZNode=/hbase
14/04/09 16:23:41 INFO zookeeper.ClientCnxn: Opening socket connection to server Slave5.Hadoop/192.168.8.205:2181. Will not attempt to authenticate using SASL (Unable to locate a login configuration)
14/04/09 16:23:41 INFO zookeeper.RecoverableZooKeeper: Process identifier=hconnection-0x57c8b24d connecting to ZooKeeper ensemble=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181
14/04/09 16:23:41 INFO zookeeper.ClientCnxn: Socket connection established to Slave5.Hadoop/192.168.8.205:2181, initiating session
14/04/09 16:23:41 INFO zookeeper.ClientCnxn: Session establishment complete on server Slave5.Hadoop/192.168.8.205:2181, sessionid = 0x453fecb6c50009, negotiated timeout = 90000
14/04/09 16:23:41 INFO Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Initiating client connection, connectString=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181 sessionTimeout=90000 watcher=catalogtracker-on-hconnection-0x57c8b24d, quorum=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181, baseZNode=/hbase
14/04/09 16:23:41 INFO zookeeper.ClientCnxn: Opening socket connection to server Slave7.Hadoop/192.168.8.207:2181. Will not attempt to authenticate using SASL (Unable to locate a login configuration)
14/04/09 16:23:41 INFO zookeeper.RecoverableZooKeeper: Process identifier=catalogtracker-on-hconnection-0x57c8b24d connecting to ZooKeeper ensemble=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181
14/04/09 16:23:41 INFO zookeeper.ClientCnxn: Socket connection established to Slave7.Hadoop/192.168.8.207:2181, initiating session
14/04/09 16:23:41 INFO zookeeper.ClientCnxn: Session establishment complete on server Slave7.Hadoop/192.168.8.207:2181, sessionid = 0x2453fecb6f50008, negotiated timeout = 90000
14/04/09 16:23:41 INFO zookeeper.ZooKeeper: Session: 0x2453fecb6f50008 closed
14/04/09 16:23:41 INFO zookeeper.ClientCnxn: EventThread shut down
14/04/09 16:23:41 INFO mapreduce.HBaseImportJob: Creating missing HBase table demo_sqoop2hbase
14/04/09 16:23:42 INFO zookeeper.ZooKeeper: Initiating client connection, connectString=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181 sessionTimeout=90000 watcher=catalogtracker-on-hconnection-0x57c8b24d, quorum=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181, baseZNode=/hbase
14/04/09 16:23:42 INFO zookeeper.RecoverableZooKeeper: Process identifier=catalogtracker-on-hconnection-0x57c8b24d connecting to ZooKeeper ensemble=Slave6.Hadoop:2181,Slave5.Hadoop:2181,Slave7.Hadoop:2181
14/04/09 16:23:42 INFO zookeeper.ClientCnxn: Opening socket connection to server Slave7.Hadoop/192.168.8.207:2181. Will not attempt to authenticate using SASL (Unable to locate a login configuration)
14/04/09 16:23:42 INFO zookeeper.ClientCnxn: Socket connection established to Slave7.Hadoop/192.168.8.207:2181, initiating session
14/04/09 16:23:42 INFO zookeeper.ClientCnxn: Session establishment complete on server Slave7.Hadoop/192.168.8.207:2181, sessionid = 0x2453fecb6f50009, negotiated timeout = 90000
14/04/09 16:23:42 INFO zookeeper.ZooKeeper: Session: 0x2453fecb6f50009 closed
14/04/09 16:23:42 INFO zookeeper.ClientCnxn: EventThread shut down
14/04/09 16:23:42 INFO client.RMProxy: Connecting to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/04/09 16:23:47 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`id`), MAX(`id`) FROM `demo_blog`
14/04/09 16:23:47 INFO mapreduce.JobSubmitter: number of splits:3
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.job.classpath.files is deprecated. Instead, use mapreduce.job.classpath.files
14/04/09 16:23:47 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.cache.files.filesizes is deprecated. Instead, use mapreduce.job.cache.files.filesizes
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.cache.files is deprecated. Instead, use mapreduce.job.cache.files
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/04/09 16:23:47 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/04/09 16:23:47 INFO Configuration.deprecation: mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
14/04/09 16:23:47 INFO Configuration.deprecation: mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.cache.files.timestamps is deprecated. Instead, use mapreduce.job.cache.files.timestamps
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/04/09 16:23:47 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/04/09 16:23:47 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1396936838233_0005
14/04/09 16:23:47 INFO impl.YarnClientImpl: Submitted application application_1396936838233_0005 to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/04/09 16:23:47 INFO mapreduce.Job: The url to track the job: http://Master.Hadoop:8088/proxy/application_1396936838233_0005/
14/04/09 16:23:47 INFO mapreduce.Job: Running job: job_1396936838233_0005
14/04/09 16:23:55 INFO mapreduce.Job: Job job_1396936838233_0005 running in uber mode : false
14/04/09 16:23:55 INFO mapreduce.Job:  map 0% reduce 0%
14/04/09 16:24:05 INFO mapreduce.Job:  map 33% reduce 0%
14/04/09 16:24:12 INFO mapreduce.Job:  map 100% reduce 0%
14/04/09 16:24:12 INFO mapreduce.Job: Job job_1396936838233_0005 completed successfully
14/04/09 16:24:12 INFO mapreduce.Job: Counters: 27
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=354636
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=295
		HDFS: Number of bytes written=0
		HDFS: Number of read operations=3
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=0
	Job Counters 
		Launched map tasks=3
		Other local map tasks=3
		Total time spent by all maps in occupied slots (ms)=35297
		Total time spent by all reduces in occupied slots (ms)=0
	Map-Reduce Framework
		Map input records=3
		Map output records=3
		Input split bytes=295
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=381
		CPU time spent (ms)=11050
		Physical memory (bytes) snapshot=543367168
		Virtual memory (bytes) snapshot=3918925824
		Total committed heap usage (bytes)=156958720
	File Input Format Counters 
		Bytes Read=0
	File Output Format Counters 
		Bytes Written=0
14/04/09 16:24:12 INFO mapreduce.ImportJobBase: Transferred 0 bytes in 29.7126 seconds (0 bytes/sec)
14/04/09 16:24:12 INFO mapreduce.ImportJobBase: Retrieved 3 records.
Salin selepas log masuk
hbase shell中验证导入的数据:
hbase(main):009:0> list
TABLE                                                                                                       
demo_sqoop2hbase                                                                                            
table_02                                                                                                    
table_03                                                                                                    
test_table                                                                                                  
xyz                                                                                                         
5 row(s) in 0.0310 seconds
=> ["demo_sqoop2hbase", "table_02", "table_03", "test_table", "xyz"]
hbase(main):010:0> scan "demo_sqoop2hbase"
ROW                          COLUMN+CELL                                                                    
 1                           column=url:blog, timestamp=1397031850700, value=micmiu.com                     
 2                           column=url:blog, timestamp=1397031844106, value=ctosun.com                     
 3                           column=url:blog, timestamp=1397031849888, value=baby.micmiu.com                
3 row(s) in 0.0730 seconds
hbase(main):011:0> describe "demo_sqoop2hbase"
DESCRIPTION                                                            ENABLED                              
 'demo_sqoop2hbase', {NAME => 'url', DATA_BLOCK_ENCODING => 'NONE', BL true                                 
 OOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '1', COMPRE                                      
 SSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647', KEEP_DELET                                      
 ED_CELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOC                                      
 KCACHE => 'true'}                                                                                          
1 row(s) in 0.0580 seconds
hbase(main):012:0>
Salin selepas log masuk
验证导入成功。 本文到此已经把MySQL中的数据迁移到 HDFS、Hive、HBase的三种基本情况演示结束。 参考:
  • http://sqoop.apache.org/docs/1.4.4/SqoopUserGuide.html
—————– ?EOF?@Michael Sun?—————–
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1663
14
Tutorial PHP
1266
29
Tutorial C#
1238
24
Penyelesaian kepada masalah bahawa sistem Win11 tidak dapat memasang pek bahasa Cina Penyelesaian kepada masalah bahawa sistem Win11 tidak dapat memasang pek bahasa Cina Mar 09, 2024 am 09:48 AM

Penyelesaian kepada masalah sistem Win11 tidak dapat memasang pek bahasa Cina Dengan pelancaran sistem Windows 11, ramai pengguna mula menaik taraf sistem pengendalian mereka untuk mengalami fungsi dan antara muka baharu. Walau bagaimanapun, sesetengah pengguna mendapati bahawa mereka tidak dapat memasang pek bahasa Cina selepas menaik taraf, yang menyusahkan pengalaman mereka. Dalam artikel ini, kami akan membincangkan sebab mengapa sistem Win11 tidak dapat memasang pek bahasa Cina dan menyediakan beberapa penyelesaian untuk membantu pengguna menyelesaikan masalah ini. Analisis sebab Pertama, mari kita menganalisis ketidakupayaan sistem Win11 untuk

Tidak dapat memasang tambahan tetamu dalam VirtualBox Tidak dapat memasang tambahan tetamu dalam VirtualBox Mar 10, 2024 am 09:34 AM

Anda mungkin tidak dapat memasang tambahan tetamu pada mesin maya dalam OracleVirtualBox. Apabila kita mengklik pada Devices>InstallGuestAdditionsCDImage, ia hanya membuang ralat seperti yang ditunjukkan di bawah: VirtualBox - Ralat: Tidak dapat memasukkan cakera maya C: Programming FilesOracleVirtualBoxVBoxGuestAdditions.iso ke dalam mesin ubuntu Dalam siaran ini kita akan memahami apa yang berlaku apabila anda Apa yang perlu dilakukan apabila anda tidak boleh memasang tambahan tetamu dalam VirtualBox. Tidak dapat memasang tambahan tetamu dalam VirtualBox Jika anda tidak boleh memasangnya dalam Virtua

Apakah yang perlu saya lakukan jika Baidu Netdisk berjaya dimuat turun tetapi tidak boleh dipasang? Apakah yang perlu saya lakukan jika Baidu Netdisk berjaya dimuat turun tetapi tidak boleh dipasang? Mar 13, 2024 pm 10:22 PM

Jika anda telah berjaya memuat turun fail pemasangan Baidu Netdisk, tetapi tidak dapat memasangnya seperti biasa, mungkin terdapat ralat dalam integriti fail perisian atau terdapat masalah dengan baki fail dan entri pendaftaran Biarkan tapak ini mengambil jaga ia untuk pengguna Mari perkenalkan analisis masalah yang Baidu Netdisk berjaya dimuat turun tetapi tidak boleh dipasang. Analisis masalah yang berjaya dimuat turun oleh Baidu Netdisk tetapi tidak dapat dipasang 1. Semak integriti fail pemasangan: Pastikan fail pemasangan yang dimuat turun lengkap dan tidak rosak. Anda boleh memuat turunnya semula atau cuba memuat turun fail pemasangan daripada sumber lain yang dipercayai. 2. Matikan perisian anti-virus dan tembok api: Sesetengah perisian anti-virus atau program tembok api mungkin menghalang program pemasangan daripada berjalan dengan betul. Cuba lumpuhkan atau keluar dari perisian anti-virus dan tembok api, kemudian jalankan semula pemasangan

Fahami Linux Bashrc: fungsi, konfigurasi dan penggunaan Fahami Linux Bashrc: fungsi, konfigurasi dan penggunaan Mar 20, 2024 pm 03:30 PM

Memahami Linux Bashrc: Fungsi, Konfigurasi dan Penggunaan Dalam sistem Linux, Bashrc (BourneAgainShellruncommands) ialah fail konfigurasi yang sangat penting, yang mengandungi pelbagai arahan dan tetapan yang dijalankan secara automatik apabila sistem dimulakan. Fail Bashrc biasanya terletak dalam direktori rumah pengguna dan merupakan fail tersembunyi Fungsinya adalah untuk menyesuaikan persekitaran Bashshell untuk pengguna. 1. Persekitaran tetapan fungsi Bashrc

Bagaimana untuk memasang apl Android pada Linux? Bagaimana untuk memasang apl Android pada Linux? Mar 19, 2024 am 11:15 AM

Memasang aplikasi Android di Linux sentiasa menjadi kebimbangan ramai pengguna Terutamanya bagi pengguna Linux yang suka menggunakan aplikasi Android, adalah sangat penting untuk menguasai cara memasang aplikasi Android pada sistem Linux. Walaupun menjalankan aplikasi Android secara langsung pada Linux tidak semudah pada platform Android, dengan menggunakan emulator atau alatan pihak ketiga, kami masih boleh menikmati aplikasi Android di Linux dengan gembira. Berikut akan memperkenalkan cara memasang aplikasi Android pada sistem Linux.

Bagaimana untuk memasang Podman pada Ubuntu 24.04 Bagaimana untuk memasang Podman pada Ubuntu 24.04 Mar 22, 2024 am 11:26 AM

Jika anda telah menggunakan Docker, anda mesti memahami daemon, bekas dan fungsinya. Daemon ialah perkhidmatan yang berjalan di latar belakang apabila bekas sudah digunakan dalam mana-mana sistem. Podman ialah alat pengurusan percuma untuk mengurus dan mencipta bekas tanpa bergantung pada mana-mana daemon seperti Docker. Oleh itu, ia mempunyai kelebihan dalam menguruskan kontena tanpa memerlukan perkhidmatan backend jangka panjang. Selain itu, Podman tidak memerlukan kebenaran peringkat akar untuk digunakan. Panduan ini membincangkan secara terperinci cara memasang Podman pada Ubuntu24. Untuk mengemas kini sistem, kami perlu mengemas kini sistem terlebih dahulu dan membuka shell Terminal Ubuntu24. Semasa kedua-dua proses pemasangan dan peningkatan, kita perlu menggunakan baris arahan. yang mudah

Langkah terperinci untuk memasang bahasa Go pada komputer Win7 Langkah terperinci untuk memasang bahasa Go pada komputer Win7 Mar 27, 2024 pm 02:00 PM

Langkah terperinci untuk memasang bahasa Go pada komputer Win7 Go (juga dikenali sebagai Golang) ialah bahasa pengaturcaraan sumber terbuka yang dibangunkan oleh Google Ia mudah, cekap dan mempunyai prestasi serentak yang sangat baik Ia sesuai untuk pembangunan perkhidmatan awan, aplikasi rangkaian dan sistem hujung belakang. Memasang bahasa Go pada komputer Win7 membolehkan anda memulakan bahasa dengan cepat dan mula menulis program Go. Berikut akan memperkenalkan secara terperinci langkah-langkah untuk memasang bahasa Go pada komputer Win7, dan melampirkan contoh kod tertentu. Langkah 1: Muat turun pakej pemasangan bahasa Go dan lawati tapak web rasmi Go

Cara Memasang dan Menjalankan Apl Nota Ubuntu pada Ubuntu 24.04 Cara Memasang dan Menjalankan Apl Nota Ubuntu pada Ubuntu 24.04 Mar 22, 2024 pm 04:40 PM

Semasa belajar di sekolah menengah, sesetengah pelajar mengambil nota yang sangat jelas dan tepat, mengambil lebih banyak nota daripada yang lain dalam kelas yang sama. Bagi sesetengah orang, mencatat nota adalah hobi, manakala bagi yang lain, ia adalah satu keperluan apabila mereka mudah melupakan maklumat kecil tentang apa-apa perkara penting. Aplikasi NTFS Microsoft amat berguna untuk pelajar yang ingin menyimpan nota penting di luar kuliah biasa. Dalam artikel ini, kami akan menerangkan pemasangan aplikasi Ubuntu pada Ubuntu24. Mengemas kini Sistem Ubuntu Sebelum memasang pemasang Ubuntu, pada Ubuntu24 kita perlu memastikan bahawa sistem yang baru dikonfigurasikan telah dikemas kini. Kita boleh menggunakan "a" yang paling terkenal dalam sistem Ubuntu

See all articles