java.net.ConnectException: to 0.0.0.0:10020 failed
在DataNode节点中的Hive CLI中执行 select count(*) from table_name 查询时报错: java.io.IOException: java.net.ConnectException: Call From Slave7.Hadoop/192.168.8.207 to 0.0.0.0:10020 failed on connection exception: java.net.ConnectException:
在DataNode节点中的Hive CLI中执行 select count(*) from table_name 查询时报错:java.io.IOException: java.net.ConnectException: Call From Slave7.Hadoop/192.168.8.207 to 0.0.0.0:10020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:331) at org.apache.hadoop.mapred.ClientServiceDelegate.getJobStatus(ClientServiceDelegate.java:416) at org.apache.hadoop.mapred.YARNRunner.getJobStatus(YARNRunner.java:522) at org.apache.hadoop.mapreduce.Cluster.getJob(Cluster.java:183) at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:580) at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:578) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:416) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491) at org.apache.hadoop.mapred.JobClient.getJobUsingCluster(JobClient.java:578) at org.apache.hadoop.mapred.JobClient.getJob(JobClient.java:596) at org.apache.hadoop.hive.ql.exec.mr.HadoopJobExecHelper.progress(HadoopJobExecHelper.java:288) at org.apache.hadoop.hive.ql.exec.mr.HadoopJobExecHelper.progress(HadoopJobExecHelper.java:547) at org.apache.hadoop.hive.ql.exec.mr.ExecDriver.execute(ExecDriver.java:426) at org.apache.hadoop.hive.ql.exec.mr.MapRedTask.execute(MapRedTask.java:136) at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:153) at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:85) at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:1472) at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:1239) at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:1057) at org.apache.hadoop.hive.ql.Driver.run(Driver.java:884) at org.apache.hadoop.hive.ql.Driver.run(Driver.java:874) at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:268) at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:220) at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:423) at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:792) at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:686) at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:625) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
10020
可以大概看出,DataNode 需要访问?MapReduce JobHistory Server,如果没有修改则用默认值:?0.0.0.0:10020
。需要修改配置文件?mapred-site.xml
??:
<property> <name>mapreduce.jobhistory.address</name> <!-- 配置实际的主机名和端口--> <value>Master.Hadoop:10020</value> </property>
原文地址:java.net.ConnectException: to 0.0.0.0:10020 failed, 感谢原作者分享。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Artikel ini membincangkan menggunakan pernyataan jadual Alter MySQL untuk mengubah suai jadual, termasuk menambah/menjatuhkan lajur, menamakan semula jadual/lajur, dan menukar jenis data lajur.

Artikel membincangkan mengkonfigurasi penyulitan SSL/TLS untuk MySQL, termasuk penjanaan sijil dan pengesahan. Isu utama menggunakan implikasi keselamatan sijil yang ditandatangani sendiri. [Kira-kira aksara: 159]

Keupayaan carian teks penuh InnoDB sangat kuat, yang dapat meningkatkan kecekapan pertanyaan pangkalan data dan keupayaan untuk memproses sejumlah besar data teks. 1) InnoDB melaksanakan carian teks penuh melalui pengindeksan terbalik, menyokong pertanyaan carian asas dan maju. 2) Gunakan perlawanan dan terhadap kata kunci untuk mencari, menyokong mod boolean dan carian frasa. 3) Kaedah pengoptimuman termasuk menggunakan teknologi segmentasi perkataan, membina semula indeks dan menyesuaikan saiz cache untuk meningkatkan prestasi dan ketepatan.

Artikel membincangkan alat MySQL GUI yang popular seperti MySQL Workbench dan PHPMyAdmin, membandingkan ciri dan kesesuaian mereka untuk pemula dan pengguna maju. [159 aksara]

Artikel membincangkan strategi untuk mengendalikan dataset besar di MySQL, termasuk pembahagian, sharding, pengindeksan, dan pengoptimuman pertanyaan.

Artikel ini membincangkan jadual menjatuhkan di MySQL menggunakan pernyataan Jadual Drop, menekankan langkah berjaga -jaga dan risiko. Ia menyoroti bahawa tindakan itu tidak dapat dipulihkan tanpa sandaran, memperincikan kaedah pemulihan dan bahaya persekitaran pengeluaran yang berpotensi.

Artikel membincangkan menggunakan kunci asing untuk mewakili hubungan dalam pangkalan data, memberi tumpuan kepada amalan terbaik, integriti data, dan perangkap umum untuk dielakkan.

Artikel ini membincangkan membuat indeks pada lajur JSON dalam pelbagai pangkalan data seperti PostgreSQL, MySQL, dan MongoDB untuk meningkatkan prestasi pertanyaan. Ia menerangkan sintaks dan faedah mengindeks laluan JSON tertentu, dan menyenaraikan sistem pangkalan data yang disokong.
