Rumah pangkalan data tutorial mysql Efficient Indexing in MongoDB 2.6

Efficient Indexing in MongoDB 2.6

Jun 07, 2016 pm 04:35 PM
mongodb

By Osmar Olivo, Product Manager at MongoDB One of the most powerful features of MongoDB is its rich indexing functionality. Users can specify secondary indexes on any field, compound indexes, geospatial, text, sparse, TTL, and others. Havi

By Osmar Olivo, Product Manager at MongoDB

One of the most powerful features of MongoDB is its rich indexing functionality. Users can specify secondary indexes on any field, compound indexes, geospatial, text, sparse, TTL, and others. Having extensive indexing functionality makes it easier for developers to build apps that provide rich functionality and low latency.

MongoDB 2.6 introduces a new query planner, including the ability to perform index intersection. Prior to 2.6 the query planner could only make use of a single index for most queries. That meant that if you wanted to query on multiple fields together, you needed to create a compound index. It also meant that if there were several different combinations of fields you wanted to query on, you might need several different compound indexes.

Each index adds overhead to your deployment - indexes consume space, on disk and in RAM, and indexes are maintained during updates, which adds disk IO. In other words, indexes improve the efficiency of many operations, but they also come at a cost. For many applications, index intersection will allow users to reduce the number of indexes they need while still providing rich features and low latency.

In the following sections we will take a deep dive into index intersection and how it can be applied to applications.

An Example - The Phone Book

Let’s take the example of a phone book with the following schema.

{
    FirstName
    LastName
    Phone_Number
    Address
}
Salin selepas log masuk

If I were to search for “Smith, John” how would I index the following query to be as efficient as possible?

db.phonebook.find({ FirstName : “John”, LastName : “Smith” })
Salin selepas log masuk

I could use an individual index on FirstName and search for all of the “Johns”.

This would look something like ensureIndex( { FirstName : 1 } )

We run this query and we get back 200,000 John Smiths. Looking at the explain() output below however, we see that we scanned 1,000,000 “Johns” in the process of finding 200,000 “John Smiths”.

> db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor FirstName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 1000000,
    "nscanned" : 1000000,
    "nscannedObjectsAllPlans" : 1000101,
    "nscannedAllPlans" : 1000101,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 2,
    "nChunkSkips" : 0,
    "millis" : 2043,
    "indexBounds" : {
        "FirstName" : [
            [
                "John",
                "John"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Salin selepas log masuk

How about creating an individual index on LastName?

This would look something like ensureIndex( { LastName : 1 } )

Running this query we get back 200,000 “John Smiths” but our explain output says that we now scanned 400,000 “Smiths”. How can we make this better?

db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor LastName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 400000,
    "nscanned" : 400000,
    "nscannedObjectsAllPlans" : 400101,
    "nscannedAllPlans" : 400101,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 1,
    "nChunkSkips" : 0,
    "millis" : 852,
    "indexBounds" : {
        "LastName" : [
            [
                "Smith",
                "Smith"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Salin selepas log masuk

So we know that there are 1,000,000 “John” entries, 400,000 “Smith” entries, and 200,000 “John Smith” entries in our phonebook. Is there a way that we can scan just the 200,000 we need?

In the case of a phone book this is somewhat simple; since we know that we want it to be sorted by Lastname, Firstname we can create a compound index on them, like the below.

ensureIndex( {  LastName : true, FirstName : 1  } ) 
db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor LastName_1_FirstName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 200000,
    "nscanned" : 200000,
    "nscannedObjectsAllPlans" : 200000,
    "nscannedAllPlans" : 200000,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 0,
    "nChunkSkips" : 0,
    "millis" : 370,
    "indexBounds" : {
        "LastName" : [
            [
                "Smith",
                "Smith"
            ]
        ],
        "FirstName" : [
            [
                "John",
                "John"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Salin selepas log masuk

Looking at the explain on this, we see that the index only scanned the 200,000 documents that matched, so we got a perfect hit.

Beyond Compound Indexes

The compound index is a great solution in the case of a phonebook in which we always know how we are going to be querying our data. Now what if we have an application in which users can arbitrarily query for different fields together? We can’t possibly create a compound index for every possible combination because of the overhead imposed by indexes, as we discussed above, and because MongoDB limits you to 64 indexes per collection. Index intersection can really help.

Imagine the case of a medical application which doctors use to filter through patients. At a high level, omitting several details, a basic schema may look something like the below.

{
      Fname
      LName
      SSN
      Age
      Blood_Type
      Conditions : [] 
      Medications : [ ]
      ...
      ...
}
Salin selepas log masuk

Some sample searches that a doctor/nurse may run on this system would look something like the below.

Find me a Patient with Blood_Type = O under the age of 50

db.patients.find( {   Blood_Type : “O”,  Age : {   $lt : 50  }     } )
Salin selepas log masuk
Salin selepas log masuk

Find me all patients over the age of 60 on Medication X

db.patients.find( { Medications : “X” , Age : { $gt : 60} })
Salin selepas log masuk

Find me all Diabetic patients on medication Y

db.patients.find( { Conditions : “Diabetes”, Medications : “Y” } )
Salin selepas log masuk

With all of the unstructured data in modern applications, along with the desire to be able to search for things as needed in an ad-hoc way, it can become very difficult to predict usage patterns. Since we can’t possibly create compound indexes for every combination of fields, because we don’t necessarily know what those will be ahead of time, we can try indexing individual fields to try to salvage some performance. But as shown above in our phone book application, this can lead to performance issues in which we pull documents into memory that are not matches.

To avoid the paging of unnecessary data, the new index intersection feature in 2.6 increases the overall efficiency of these types of ad-hoc queries by processing the indexes involved individually and then intersecting the result set to find the matching documents. This means you only pull the final matching documents into memory and everything else is processed using the indexes. This processing will utilize more CPU, but should greatly reduce the amount of IO done for queries where all of the data is not in memory as well as allow you to utilize your memory more efficiently.

For example, looking at the earlier example:

db.patients.find( {   Blood_Type : “O”,  Age : {   $lt : 50  }     } )
Salin selepas log masuk
Salin selepas log masuk

It is inefficient to find all patients with BloodType: O (which could be millions) and then pull into memory each document to find the ones with age

Instead, the query planner finds all patients with bloodType: O using the index on BloodType, and all patients with age

Index intersection allows for much more efficient use of existing RAM so less total memory will usually be required to fit the working set then previously. Also, if you had several compound indices that were made up of different combinations of fields, then you can reduce the total number of indexes on the system. This means storing less indices in memory as well as achieving better insert/update performance since fewer indices must be updated.

As of version 2.6.0, you cannot intersect with geo or text indices and you can intersect at most 2 separate indices with each other. These limitations are likely to change in a future release.

Optimizing Multi-key Indexes It is also possible to intersect an index with itself in the case of multi-key indexes. Consider the below query:

Find me all patients with Diabetes & High Blood Pressure

db.patients.find( {  Conditions : { $all : [ “Diabetes”, “High Blood Pressure” ]  }    }  )
Salin selepas log masuk

In this case we will find the result set of all Patients with Diabetes, and the result set of all patients with High blood pressure, and intersect the two to get all patients with both. Again, this requires less memory and disk speed for better overall performance. As of the 2.6.0 release, an index can intersect with itself up to 10 times.

Do We Still Need Compound Indexes?

To be clear, compound indexing will ALWAYS be more performant IF you know what you are going to be querying on and can create one ahead of time. Furthermore, if your working set is entirely in memory, then you will not reap any of the benefits of Index Intersection as it is primarily based on reducing IO. But in a more ad-hoc case where one cannot predict the shape of the queries and the working set is much larger than available memory, index intersection will automatically take over and choose the most performant path.

  • Download MongoDB 2.6 Today
  • Learn about all of the key new features in MongoDB 2.6 by downloading the whitepaper
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Apakah kegunaan net4.0 Apakah kegunaan net4.0 May 10, 2024 am 01:09 AM

.NET 4.0 digunakan untuk mencipta pelbagai aplikasi dan ia menyediakan pemaju aplikasi dengan ciri yang kaya termasuk: pengaturcaraan berorientasikan objek, fleksibiliti, seni bina berkuasa, penyepaduan pengkomputeran awan, pengoptimuman prestasi, perpustakaan yang luas, keselamatan, Kebolehskalaan, akses data dan mudah alih sokongan pembangunan.

Cara mengkonfigurasi pengembangan automatik MongoDB pada Debian Cara mengkonfigurasi pengembangan automatik MongoDB pada Debian Apr 02, 2025 am 07:36 AM

Artikel ini memperkenalkan cara mengkonfigurasi MongoDB pada sistem Debian untuk mencapai pengembangan automatik. Langkah -langkah utama termasuk menubuhkan set replika MongoDB dan pemantauan ruang cakera. 1. Pemasangan MongoDB Pertama, pastikan MongoDB dipasang pada sistem Debian. Pasang menggunakan arahan berikut: SudoaptDateSudoaptInstall-ImongoDB-Org 2. Mengkonfigurasi set replika replika MongoDB MongoDB Set memastikan ketersediaan dan kelebihan data yang tinggi, yang merupakan asas untuk mencapai pengembangan kapasiti automatik. Mula MongoDB Service: sudosystemctlstartmongodsudosys

Cara Memastikan Ketersediaan MongoDB Tinggi di Debian Cara Memastikan Ketersediaan MongoDB Tinggi di Debian Apr 02, 2025 am 07:21 AM

Artikel ini menerangkan cara membina pangkalan data MongoDB yang sangat tersedia pada sistem Debian. Kami akan meneroka pelbagai cara untuk memastikan keselamatan data dan perkhidmatan terus beroperasi. Strategi Utama: Replicaset: Replicaset: Gunakan replika untuk mencapai redundansi data dan failover automatik. Apabila nod induk gagal, set replika secara automatik akan memilih nod induk baru untuk memastikan ketersediaan perkhidmatan yang berterusan. Sandaran dan Pemulihan Data: Secara kerap Gunakan perintah Mongodump untuk membuat sandaran pangkalan data dan merumuskan strategi pemulihan yang berkesan untuk menangani risiko kehilangan data. Pemantauan dan penggera: Menyebarkan alat pemantauan (seperti Prometheus, Grafana) untuk memantau status MongoDB dalam masa nyata, dan

Kaedah Navicat untuk melihat kata laluan pangkalan data MongoDB Kaedah Navicat untuk melihat kata laluan pangkalan data MongoDB Apr 08, 2025 pm 09:39 PM

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

Apakah strategi sandaran CentOS MongoDB? Apakah strategi sandaran CentOS MongoDB? Apr 14, 2025 pm 04:51 PM

Penjelasan terperinci mengenai strategi sandaran yang cekap MongoDB di bawah sistem CentOS Artikel ini akan memperkenalkan secara terperinci pelbagai strategi untuk melaksanakan sandaran MongoDB pada sistem CentOS untuk memastikan kesinambungan data dan kesinambungan perniagaan. Kami akan merangkumi sandaran manual, sandaran masa, sandaran skrip automatik, dan kaedah sandaran dalam persekitaran kontena Docker, dan menyediakan amalan terbaik untuk pengurusan fail sandaran. Sandaran Manual: Gunakan perintah Mongodump untuk melakukan sandaran penuh manual, contohnya: Mongodump-Hlocalhost: 27017-U Pengguna-P Password-D Database Data-O/Backup Direktori Perintah ini akan mengeksport data dan metadata pangkalan data yang ditentukan ke direktori sandaran yang ditentukan.

Cara Menyulitkan Data dalam Debian Mongodb Cara Menyulitkan Data dalam Debian Mongodb Apr 12, 2025 pm 08:03 PM

Menyulitkan pangkalan data MongoDB pada sistem Debian memerlukan langkah berikut: Langkah 1: Pasang MongoDB terlebih dahulu, pastikan sistem Debian anda dipasang MongoDB. Jika tidak, sila rujuk kepada dokumen MongoDB rasmi untuk pemasangan: https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/step 2: menghasilkan fail kunci penyulitan Buat fail yang mengandungi kunci penyulitan dan tetapkan kebenaran yang betul:

Kemas kini utama Pi Coin: Pi Bank akan datang! Kemas kini utama Pi Coin: Pi Bank akan datang! Mar 03, 2025 pm 06:18 PM

Pinetwork akan melancarkan Pibank, platform perbankan mudah alih revolusioner! Pinetwork hari ini mengeluarkan kemas kini utama mengenai Pimisrbank Elmahrosa (muka), yang disebut sebagai Pibank, yang mengintegrasikan dengan baik perkhidmatan perbankan tradisi C). Apakah pesona Pibank? Mari kita cari! Fungsi utama Pibank: Pengurusan sehenti akaun bank dan aset cryptocurrency. Menyokong urus niaga masa nyata dan mengamalkan biospesies

Pangkalan Data MongoDB dan Relasi: Perbandingan Komprehensif Pangkalan Data MongoDB dan Relasi: Perbandingan Komprehensif Apr 08, 2025 pm 06:30 PM

MONGODB dan Pangkalan Data Relasi: Perbandingan mendalam Artikel ini akan meneroka dengan mendalam perbezaan antara pangkalan data NoSQL MongoDB dan pangkalan data hubungan tradisional (seperti MySQL dan SQLServer). Pangkalan data relasi menggunakan struktur jadual baris dan lajur untuk menganjurkan data, manakala MongoDB menggunakan model berorientasikan dokumen yang fleksibel untuk memenuhi keperluan aplikasi moden. Terutamanya membezakan struktur data: pangkalan data relasi menggunakan jadual skema yang telah ditetapkan untuk menyimpan data, dan hubungan antara jadual ditubuhkan melalui kunci utama dan kunci asing; MongoDB menggunakan dokumen BSON seperti JSON untuk menyimpannya dalam koleksi, dan setiap struktur dokumen boleh diubah secara bebas untuk mencapai reka bentuk bebas corak. Reka bentuk seni bina: pangkalan data relasi perlu skema tetap yang telah ditetapkan; MongoDB menyokong

See all articles