MySQL性能剖析工具(pt-query-digest)
这个工具同样来自percona-toolkit该工具集合的其他工具MySQL Slave异常关机的处理 (pt-slave-restart)
这个工具同样来自percona-toolkit
该工具集合的其他工具
MySQL Slave异常关机的处理 (pt-slave-restart)
验证MySQL主从一致性(pt-table-checksum&pt-table-sync)
它可以剖析各种日志,从而分析性能问题
包括
1.慢日志(默认)
2.tcpdump
3.general log
4.binlog
5.show processlist
实验通过tpcc模拟一定的压力,并开启binlog,general log,slow log和tcpdump收集日志。
关于tpcc参考:
1.slow log方式
将slow_query_log设置为on
long_query_time设置为0
重新连接服务器(一般意味着中间件服务器重启)
这样慢日志将记录所有的操作。
通过pt-query-digest分析慢日志文件,生成剖析报告
首先是概要信息,包括一共有54.17k个操作,46个语句,平均每秒1.55k查询,剖析报告覆盖的时间等。
概要还包括类似Top SQL的分析
可以从响应时间查看对服务器性能影响最大的SQL,其中R/Call指的是 平均每次执行的响应时间 ResponseTime/Calls
然后就是每条SQL的详细剖析报告,
pct指的是该项占概要报告中的百分比
2.tcpdump方式
因为慢日志方式需要重新连接,而生产环境重启中间件是非常昂贵的操作。
所以在数据库服务器上抓包分析也是一种不错的选择。
pt-query-digest对于抓包有一定的格式。(-x -nn -q -tttt)
-s:源端口
-c:抓包的数量
tcpdump -s 65535 -x -nn -q -tttt -i any -c 100000 port 3306 > test.dmp
在完成抓包采集之后进行分析
pt-query-digest --limit 10 --type tcpdump test.dmp
limit 10 限制显示排名前10的操作
其他方式生成的信息会有缺失,可能达不到预期的效果。
而processlist方式实验失败,尚不清楚如何使用这种方式剖析性能。
--------------------------------------分割线 --------------------------------------
Ubuntu 14.04下安装MySQL
《MySQL权威指南(原书第2版)》清晰中文扫描版 PDF
Ubuntu 14.04 LTS 安装 LNMP Nginx\PHP5 (PHP-FPM)\MySQL
Ubuntu 14.04下搭建MySQL主从服务器
Ubuntu 12.04 LTS 构建高可用分布式 MySQL 集群
Ubuntu 12.04下源代码安装MySQL5.6以及Python-MySQLdb
--------------------------------------分割线 --------------------------------------
本文永久更新链接地址:

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Pengimbasan jadual penuh mungkin lebih cepat dalam MySQL daripada menggunakan indeks. Kes -kes tertentu termasuk: 1) jumlah data adalah kecil; 2) apabila pertanyaan mengembalikan sejumlah besar data; 3) Apabila lajur indeks tidak selektif; 4) Apabila pertanyaan kompleks. Dengan menganalisis rancangan pertanyaan, mengoptimumkan indeks, mengelakkan lebih banyak indeks dan tetap mengekalkan jadual, anda boleh membuat pilihan terbaik dalam aplikasi praktikal.

Keupayaan carian teks penuh InnoDB sangat kuat, yang dapat meningkatkan kecekapan pertanyaan pangkalan data dan keupayaan untuk memproses sejumlah besar data teks. 1) InnoDB melaksanakan carian teks penuh melalui pengindeksan terbalik, menyokong pertanyaan carian asas dan maju. 2) Gunakan perlawanan dan terhadap kata kunci untuk mencari, menyokong mod boolean dan carian frasa. 3) Kaedah pengoptimuman termasuk menggunakan teknologi segmentasi perkataan, membina semula indeks dan menyesuaikan saiz cache untuk meningkatkan prestasi dan ketepatan.

Ya, MySQL boleh dipasang pada Windows 7, dan walaupun Microsoft telah berhenti menyokong Windows 7, MySQL masih serasi dengannya. Walau bagaimanapun, perkara berikut harus diperhatikan semasa proses pemasangan: Muat turun pemasang MySQL untuk Windows. Pilih versi MySQL yang sesuai (komuniti atau perusahaan). Pilih direktori pemasangan yang sesuai dan set aksara semasa proses pemasangan. Tetapkan kata laluan pengguna root dan simpan dengan betul. Sambung ke pangkalan data untuk ujian. Perhatikan isu keserasian dan keselamatan pada Windows 7, dan disyorkan untuk menaik taraf ke sistem operasi yang disokong.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

Perbezaan antara indeks clustered dan indeks bukan cluster adalah: 1. Klustered Index menyimpan baris data dalam struktur indeks, yang sesuai untuk pertanyaan oleh kunci dan julat utama. 2. Indeks Indeks yang tidak berkumpul indeks nilai utama dan penunjuk kepada baris data, dan sesuai untuk pertanyaan lajur utama bukan utama.

Dalam pangkalan data MySQL, hubungan antara pengguna dan pangkalan data ditakrifkan oleh kebenaran dan jadual. Pengguna mempunyai nama pengguna dan kata laluan untuk mengakses pangkalan data. Kebenaran diberikan melalui perintah geran, sementara jadual dibuat oleh perintah membuat jadual. Untuk mewujudkan hubungan antara pengguna dan pangkalan data, anda perlu membuat pangkalan data, membuat pengguna, dan kemudian memberikan kebenaran.

MySQL dan Mariadb boleh wujud bersama, tetapi perlu dikonfigurasikan dengan berhati -hati. Kuncinya adalah untuk memperuntukkan nombor port dan direktori data yang berbeza untuk setiap pangkalan data, dan menyesuaikan parameter seperti peruntukan memori dan saiz cache. Konfigurasi sambungan, konfigurasi aplikasi, dan perbezaan versi juga perlu dipertimbangkan dan perlu diuji dengan teliti dan dirancang untuk mengelakkan perangkap. Menjalankan dua pangkalan data secara serentak boleh menyebabkan masalah prestasi dalam situasi di mana sumber terhad.

MySQL menyokong empat jenis indeks: B-Tree, Hash, Full-Text, dan Spatial. 1. B-Tree Index sesuai untuk carian nilai yang sama, pertanyaan dan penyortiran. 2. Indeks hash sesuai untuk carian nilai yang sama, tetapi tidak menyokong pertanyaan dan penyortiran pelbagai. 3. Indeks teks penuh digunakan untuk carian teks penuh dan sesuai untuk memproses sejumlah besar data teks. 4. Indeks spatial digunakan untuk pertanyaan data geospatial dan sesuai untuk aplikasi GIS.
