Oracle执行计划中的连接方式nested loops join、sort merge joinn、hash join
Oracle执行计划中的连接方式nested loops join、sort merge joinn、hash join
关键字:nested loops join、sort merge joinn、hash join
嵌套循环(Nested Loops (NL))
假如有A、B两张表进行嵌套循环连接,那么Oracle会首先从A表中提取一条记录,然后去B表中查找相应的匹配记录,如果有的话,就把该条记录的信息推到等待返回的结果集中,然后再去从A表中提取第二条记录,去在B表中找第二条匹配的记录,如果符合就推到返回的结果集中,依次类推,直到A表中的数据全部被处理完成,将结果集返回,就完成了嵌套循环连接的操作。
(散列)哈希连接(Hash Join (HJ))
假如有A、B两张表进行哈希连接,那么ORACLE会首先将B表在内存中建立一棵以散列表形式存在的查询二叉树C,然后开始读取A表的第一条记录,,从C中去找匹配的记录,如果有,则推到结果集中。再提取A中的第二条记录,如果有,则推到结果集中,以此类推,直到A中没有记录,返回结果集。
(归并)排序合并连接(Sort Merge Join (SMJ) )
假如有A、B两张表进行排序合并连接,ORACLE会首先将A表进行排序,形成一张临时的“表”C,然后将B进行排序,形成一张临时的“表”D,然后将C与D进行合并操作,返回结果集。
如果从预获取的数据量的角度而言,如果B表参与计算的数据量比较小的话,则嵌套循环连接的效率就是比较高的,因为可以很少的IO就可以获取到最终的结果集。但是如果数据量比较大的话,hash join和sort merge join是比较有优势的。
如果从索引的角度而言,索引可以提高nested loops的效率,因为从B表获取数据进行操作,就类似于从单表中查询数据一样,table access full和by index的效率肯定是不一样的,但是这个也取决于B的参与计算的数据量,如果B表的数据都在可以被一次抓取的数据块的大小之内的话,那么索引未必会被使用到。
如果从内存的角度上,同样的数据量nested loops的内存占用应该是最小的,sort merge 应该是最大的,而hash join内存消耗在中间。只是一种感官的直觉,具体没有测试过,因为sort merge 需要创建两个排序表,而hash join则需要对B表创建一棵查询树。
怎么从hash的角度上来看呢?估计三种表都有hash的使用,使用hash更多的是为了提高查询的效率,比如8=power(2,3),如果使用hash,可能需要创建一棵hash树,就增大了空间的消耗,如果table access full的话,需要最少扫描1次,最多扫描8次。如果使用hash,则最少1次,最多3次,就可以了,使用空间获取时间上的优势。在这个里面,至少感觉到使用到hash的有nested loops中的索引和hash join。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Pengimbasan jadual penuh mungkin lebih cepat dalam MySQL daripada menggunakan indeks. Kes -kes tertentu termasuk: 1) jumlah data adalah kecil; 2) apabila pertanyaan mengembalikan sejumlah besar data; 3) Apabila lajur indeks tidak selektif; 4) Apabila pertanyaan kompleks. Dengan menganalisis rancangan pertanyaan, mengoptimumkan indeks, mengelakkan lebih banyak indeks dan tetap mengekalkan jadual, anda boleh membuat pilihan terbaik dalam aplikasi praktikal.

Keupayaan carian teks penuh InnoDB sangat kuat, yang dapat meningkatkan kecekapan pertanyaan pangkalan data dan keupayaan untuk memproses sejumlah besar data teks. 1) InnoDB melaksanakan carian teks penuh melalui pengindeksan terbalik, menyokong pertanyaan carian asas dan maju. 2) Gunakan perlawanan dan terhadap kata kunci untuk mencari, menyokong mod boolean dan carian frasa. 3) Kaedah pengoptimuman termasuk menggunakan teknologi segmentasi perkataan, membina semula indeks dan menyesuaikan saiz cache untuk meningkatkan prestasi dan ketepatan.

Ya, MySQL boleh dipasang pada Windows 7, dan walaupun Microsoft telah berhenti menyokong Windows 7, MySQL masih serasi dengannya. Walau bagaimanapun, perkara berikut harus diperhatikan semasa proses pemasangan: Muat turun pemasang MySQL untuk Windows. Pilih versi MySQL yang sesuai (komuniti atau perusahaan). Pilih direktori pemasangan yang sesuai dan set aksara semasa proses pemasangan. Tetapkan kata laluan pengguna root dan simpan dengan betul. Sambung ke pangkalan data untuk ujian. Perhatikan isu keserasian dan keselamatan pada Windows 7, dan disyorkan untuk menaik taraf ke sistem operasi yang disokong.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

Perbezaan antara indeks clustered dan indeks bukan cluster adalah: 1. Klustered Index menyimpan baris data dalam struktur indeks, yang sesuai untuk pertanyaan oleh kunci dan julat utama. 2. Indeks Indeks yang tidak berkumpul indeks nilai utama dan penunjuk kepada baris data, dan sesuai untuk pertanyaan lajur utama bukan utama.

Dalam pangkalan data MySQL, hubungan antara pengguna dan pangkalan data ditakrifkan oleh kebenaran dan jadual. Pengguna mempunyai nama pengguna dan kata laluan untuk mengakses pangkalan data. Kebenaran diberikan melalui perintah geran, sementara jadual dibuat oleh perintah membuat jadual. Untuk mewujudkan hubungan antara pengguna dan pangkalan data, anda perlu membuat pangkalan data, membuat pengguna, dan kemudian memberikan kebenaran.

MySQL dan Mariadb boleh wujud bersama, tetapi perlu dikonfigurasikan dengan berhati -hati. Kuncinya adalah untuk memperuntukkan nombor port dan direktori data yang berbeza untuk setiap pangkalan data, dan menyesuaikan parameter seperti peruntukan memori dan saiz cache. Konfigurasi sambungan, konfigurasi aplikasi, dan perbezaan versi juga perlu dipertimbangkan dan perlu diuji dengan teliti dan dirancang untuk mengelakkan perangkap. Menjalankan dua pangkalan data secara serentak boleh menyebabkan masalah prestasi dalam situasi di mana sumber terhad.

MySQL menyokong empat jenis indeks: B-Tree, Hash, Full-Text, dan Spatial. 1. B-Tree Index sesuai untuk carian nilai yang sama, pertanyaan dan penyortiran. 2. Indeks hash sesuai untuk carian nilai yang sama, tetapi tidak menyokong pertanyaan dan penyortiran pelbagai. 3. Indeks teks penuh digunakan untuk carian teks penuh dan sesuai untuk memproses sejumlah besar data teks. 4. Indeks spatial digunakan untuk pertanyaan data geospatial dan sesuai untuk aplikasi GIS.
