巧用临时表将大结果集转换为小结果集驱动查询
sql如下SELECTDISTINCTo.orders_id,o.oa_order_id,os.orders_status_name,o.order_type,o.date_purchasedASadd_date,dop.resource,dop.country_codeFROMdm_order
sql如下
SELECT DISTINCT o.orders_id, o.oa_order_id,os.orders_status_name, o.order_type, o.date_purchased AS add_date,dop.resource, dop.country_code FROM dm_order_products AS dop LEFT JOIN orders AS o ON o.orders_id=dop.orders_id LEFT JOIN orders_total AS ot ON ot.orders_id=o.orders_id AND ot.class='ot_total' LEFT JOIN orders_status AS os ON os.orders_status_id=o.orders_status WHERE o.date_purchased >= '2014-01-31 10:00:00' AND o.date_purchased 因为需要在大结果集中order by 去重,再显示20条.表特性是orders(o)表对dm_order_products(dop)表为一对多关系,而取出来的dop.country_code为一个订单号对应唯一值,由于表结构设计问题,每次查询该country_code都需要去dop查询。所以,每次查询都放大结果集,,然后再去重,得到所要的结果集合。
explain
+----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+ | 1 | SIMPLE | o | range | PRIMARY,date_purchased | date_purchased | 9 | NULL | 952922 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | ot | ref | idx_orders_total_orders_id,class | idx_orders_total_orders_id | 4 | banggood_work.o.orders_id | 3 | | | 1 | SIMPLE | os | ref | PRIMARY | PRIMARY | 4 | banggood_work.o.orders_status | 1 | | | 1 | SIMPLE | dop | ref | orders_id | orders_id | 4 | banggood_work.o.orders_id | 2 | | +----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+索引情况使用正常,但是发现需要扫描一个大结果集.
profiling,执行时间为将近20s
mysql> show profile cpu,block io for query 1; +--------------------------------+-----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +--------------------------------+-----------+----------+------------+--------------+---------------+ | starting | 0.000025 | 0.000000 | 0.000000 | 0 | 0 | | Waiting for query cache lock | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000080 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000034 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | Waiting for query cache lock | 0.000024 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000046 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000018 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000193 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000054 | 0.000000 | 0.000000 | 0 | 0 | | Creating tmp table | 0.000031 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | Copying to tmp table | 12.491533 | 3.039538 | 3.107527 | 11896 | 824 | | Sorting result | 0.030709 | 0.034995 | 0.004000 | 16 | 496 | | Sending data | 0.000048 | 0.000000 | 0.000000 | 0 | 0 | | end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | removing tmp table | 0.010108 | 0.000000 | 0.010998 | 8 | 32 | | end | 0.000013 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | closing tables | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000338 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000033 | 0.000000 | 0.000000 | 0 | 8 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 |可以看到Copying to tmp table 占了大部分的cpu时间和io,最后sorting result占比重不大。
我们可以上面描述的结合特性,是否能够去掉Copying to tmp table 选项!因为是根据orders_id排序,取出最新的20条数据,如果我们在orders表中先把20条数据取出来,再和对应的表连接,这样一来,就将整个大结果Copying to tmp table 再排序这一步去掉!
看sql语句如下
SELECT DISTINCT o.orders_id, o.oa_order_id,os.orders_status_name, o.order_type, o.date_purchased AS add_date,dop.resource, dop.country_code FROM ( SELECT * FROM orders AS o WHERE o.date_purchased >= '2014-01-31 10:00:00' AND o.date_purchased | ALL | NULL | NULL | NULL | NULL | 20 | Using temporary; Using filesort | | 1 | PRIMARY | dop | ref | orders_id | orders_id | 4 | o.orders_id | 2 | | | 1 | PRIMARY | ot | ref | idx_orders_total_orders_id,class | idx_orders_total_orders_id | 4 | o.orders_id | 3 | | | 1 | PRIMARY | os | ref | PRIMARY | PRIMARY | 4 | o.orders_status | 1 | | | 2 | DERIVED | o | index | date_purchased | PRIMARY | 4 | NULL | 330 | Using where | +----+-------------+------------+-------+----------------------------------+----------------------------+---------+-----------------+------+---------------------------------+
Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Kemahiran pemprosesan struktur data besar: Pecahan: Pecahkan set data dan proseskannya dalam bahagian untuk mengurangkan penggunaan memori. Penjana: Hasilkan item data satu demi satu tanpa memuatkan keseluruhan set data, sesuai untuk set data tanpa had. Penstriman: Baca fail atau hasil pertanyaan baris demi baris, sesuai untuk fail besar atau data jauh. Storan luaran: Untuk set data yang sangat besar, simpan data dalam pangkalan data atau NoSQL.

Prestasi pertanyaan MySQL boleh dioptimumkan dengan membina indeks yang mengurangkan masa carian daripada kerumitan linear kepada kerumitan logaritma. Gunakan PreparedStatements untuk menghalang suntikan SQL dan meningkatkan prestasi pertanyaan. Hadkan hasil pertanyaan dan kurangkan jumlah data yang diproses oleh pelayan. Optimumkan pertanyaan penyertaan, termasuk menggunakan jenis gabungan yang sesuai, membuat indeks dan mempertimbangkan untuk menggunakan subkueri. Menganalisis pertanyaan untuk mengenal pasti kesesakan; gunakan caching untuk mengurangkan beban pangkalan data;

Membuat sandaran dan memulihkan pangkalan data MySQL dalam PHP boleh dicapai dengan mengikuti langkah berikut: Sandarkan pangkalan data: Gunakan arahan mysqldump untuk membuang pangkalan data ke dalam fail SQL. Pulihkan pangkalan data: Gunakan arahan mysql untuk memulihkan pangkalan data daripada fail SQL.

Bagaimana untuk memasukkan data ke dalam jadual MySQL? Sambung ke pangkalan data: Gunakan mysqli untuk mewujudkan sambungan ke pangkalan data. Sediakan pertanyaan SQL: Tulis pernyataan INSERT untuk menentukan lajur dan nilai yang akan dimasukkan. Laksanakan pertanyaan: Gunakan kaedah query() untuk melaksanakan pertanyaan sisipan Jika berjaya, mesej pengesahan akan dikeluarkan.

Salah satu perubahan utama yang diperkenalkan dalam MySQL 8.4 (keluaran LTS terkini pada 2024) ialah pemalam "Kata Laluan Asli MySQL" tidak lagi didayakan secara lalai. Selanjutnya, MySQL 9.0 mengalih keluar pemalam ini sepenuhnya. Perubahan ini mempengaruhi PHP dan apl lain

Untuk menggunakan prosedur tersimpan MySQL dalam PHP: Gunakan PDO atau sambungan MySQLi untuk menyambung ke pangkalan data MySQL. Sediakan penyata untuk memanggil prosedur tersimpan. Laksanakan prosedur tersimpan. Proses set keputusan (jika prosedur tersimpan mengembalikan hasil). Tutup sambungan pangkalan data.

Mencipta jadual MySQL menggunakan PHP memerlukan langkah berikut: Sambung ke pangkalan data. Buat pangkalan data jika ia tidak wujud. Pilih pangkalan data. Buat jadual. Laksanakan pertanyaan. Tutup sambungan.

Pangkalan data Oracle dan MySQL adalah kedua-dua pangkalan data berdasarkan model hubungan, tetapi Oracle lebih unggul dari segi keserasian, skalabiliti, jenis data dan keselamatan manakala MySQL memfokuskan pada kelajuan dan fleksibiliti dan lebih sesuai untuk set data bersaiz kecil. ① Oracle menyediakan pelbagai jenis data, ② menyediakan ciri keselamatan lanjutan, ③ sesuai untuk aplikasi peringkat perusahaan ① MySQL menyokong jenis data NoSQL, ② mempunyai langkah keselamatan yang lebih sedikit, dan ③ sesuai untuk aplikasi bersaiz kecil hingga sederhana.
