30G 的redis 如何优化
突然发现我们的redis 已经用了30G了,好吧这是个很尴尬的数字因为我们的缓存机器的内存目前是32G的,内存已经告竭。幸好上上周公司采购了90G的机器,现在已经零时迁移到其中的一台机器上了。(跑题下,90G的内存太爽了是我除了koding.com 之外第二次用到90G的
突然发现我们的redis 已经用了30G了,好吧这是个很尴尬的数字因为我们的缓存机器的内存目前是32G的,内存已经告竭。幸好上上周公司采购了90G的机器,现在已经零时迁移到其中的一台机器上了。(跑题下,90G的内存太爽了是我除了koding.com 之外第二次用到90G的机器,koding 是个好网站,在线编程IDE。) 但是随着数据量越来越大单机始终无法承受的,改造势在必行。经过初步思考我们得出了很简单的方案 概括起来就是 "内外兼修"
1.内功修炼
先从我们的应用层说起 看看redis 使用情况 ,有没有办法回收一些key ,先进入redis 服务器执行 info ,有删减
1: redis 127.0.0.1:6391> info
2: used_memory_human:35.58G
3: keyspace_hits:2580207188
4: db0:keys=2706740,expires=1440700
目前我们只使用了1个DB 但是key 太多了 有270W个key,已经过期的有144W。第一个想到的就是我勒个去,怎么会有这么多key ,第二个想法就是可能存在过大的key
看看能不能针对过大的key 做优化?可是遗憾的是官方并没有命令显示db 的key 大小,我们只能自己想办法了
Google 一番,发现国外友人已经写好了shell
传送门: https://gist.github.com/epicserve/5699837
可以列出每个key 大小了。可是这并不适用我们,因为我们key 太大了 执行了9个小时都没跑完,无力吐槽了。 其实还有一个选择就是用另外一个工具
传送门:https://github.com/sripathikrishnan/redis-rdb-tools
可惜这个太重了 ,不想麻烦ops ,我们就只能撩起袖子,造轮子。
把shell 代码简单看了下发件DEBUG OBJECT 是个好东西啊 ,google 下发现官网
已经有简单的调试信息了,剩下的就好处理了
1: #coding=utf-8 2: import redis 3: 4: COLOR_RED = "\033[31;49;1m %s \033[31;49;0m" 5: 6: COLOR_GREED = "\033[32;49;1m %s \033[39;49;0m" 7: 8: COLOR_YELLOW = "\033[33;49;1m %s \033[33;49;0m" 9: 10: COLOR_BLUE = "\033[34;49;1m %s \033[34;49;0m" 11: 12: COLOR_PINK = "\033[35;49;1m %s \033[35;49;0m" 13: 14: COLOR_GREENBLUE = "\033[36;49;1m %s \033[36;49;0m" 15: 16: 17: def getHumanSize(value): 18: gb = 1024 * 1024 * 1024.0 19: mb = 1024 * 1024.0 20: kb = 1024.0 >= gb: 22: return COLOR_RED % (str(round(value / gb, 2)) + " gb") 23: elif value >= mb: 24: return COLOR_YELLOW % (str(round(value / mb, 2)) + " mb") 25: elif value >= kb: 26: return COLOR_BLUE % (str(round(value / kb, 2)) + " kb") 27: else: 28: return COLOR_GREED % (str(value) + "b") 29: 30: 31: month = 3600 * 24 * 30 32: result = [] 33: client = redis.Redis(host="XXXXX", port=XXXX) 36: client.info() 37: 38: count = 0 39: for key in client.keys('*'): 40: try: 41: count += 1 42: idleTime = client.object('idletime', key) 43: refcount = client.object('refcount', key) 44: length = client.debug_object(key)['serializedlength'] 45: value = idleTime * refcount 46: print "%s key :%s , idletime : %s,refcount :%s, length : %s , humSize :%s" % (count, key, idleTime, refcount, length, getHumanSize(length)) 47: except Exception: 48: pass
写了个简单的python 脚本输出每个key 的大小和idle time,和refer count 。有了这么多数据结合awk 就可以很好的统计每个key 的使用情况。有一点要注意的是这个size 是key 在redis 中的大小,并非实际的大小,这个是经过redis 压缩的。经过分析之后发现不存在过大的key ,但是存在有些key 半年都没有被访问过 Orz 。
接下来就很好处理了,我们为每个key 设置的过期时间,若key 被hit 上则更新这个expire time 。这样可以逐步淘汰冷数据,达到冷热分离
2. 外功修炼
我们对内清理了无效的key,对外我们要做到水平扩展,单机的承载始终有限,于是我们开始了传说中的分布式改造
分布式这东西看起来很唬人做起来更唬人,幸好我们是缓存服务 CAP约束有限。 缓存服务做分布式最好的当然是一致性hash 咯。其实当我们改造完成之后,才发现官方已经准备做这个分布式的缓存体系了(流口水啊) 只是现在还在开发中 给了个备用的响当当的 Twemproxy 奈何我们已经做好了,就先用着,坐等官方测试之后再说
传送门:
我们实现了数据的平滑迁移,而且对server 的修改实现了最小影响。 因为原来是用的是phpredis 所以就扩展了下,代码可以平滑过渡。
我们自己的实现:https://github.com/trigged/redis_con_hash
其实扯了这么多就是要把redis 的数据分散开,单机的承载始终是个瓶颈,但是redis 在这方面没有Memcached 完善,不过以后会越来越好
,
Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Mod Redis cluster menyebarkan contoh Redis ke pelbagai pelayan melalui sharding, meningkatkan skalabilitas dan ketersediaan. Langkah -langkah pembinaan adalah seperti berikut: Buat contoh Redis ganjil dengan pelabuhan yang berbeza; Buat 3 contoh sentinel, memantau contoh redis dan failover; Konfigurasi fail konfigurasi sentinel, tambahkan pemantauan maklumat contoh dan tetapan failover; Konfigurasi fail konfigurasi contoh Redis, aktifkan mod kluster dan tentukan laluan fail maklumat kluster; Buat fail nodes.conf, yang mengandungi maklumat setiap contoh Redis; Mulakan kluster, laksanakan perintah Buat untuk membuat kluster dan tentukan bilangan replika; Log masuk ke kluster untuk melaksanakan perintah maklumat kluster untuk mengesahkan status kluster; buat

Cara Mengosongkan Data Redis: Gunakan perintah Flushall untuk membersihkan semua nilai utama. Gunakan perintah flushdb untuk membersihkan nilai utama pangkalan data yang dipilih sekarang. Gunakan Pilih untuk menukar pangkalan data, dan kemudian gunakan FlushDB untuk membersihkan pelbagai pangkalan data. Gunakan perintah DEL untuk memadam kunci tertentu. Gunakan alat REDIS-CLI untuk membersihkan data.

Untuk membaca giliran dari Redis, anda perlu mendapatkan nama giliran, membaca unsur -unsur menggunakan arahan LPOP, dan memproses barisan kosong. Langkah-langkah khusus adalah seperti berikut: Dapatkan nama giliran: Namakannya dengan awalan "giliran:" seperti "giliran: my-queue". Gunakan arahan LPOP: Keluarkan elemen dari kepala barisan dan kembalikan nilainya, seperti LPOP Queue: My-Queue. Memproses Baris kosong: Jika barisan kosong, LPOP mengembalikan nihil, dan anda boleh menyemak sama ada barisan wujud sebelum membaca elemen.

Menggunakan Arahan Redis memerlukan langkah -langkah berikut: Buka klien Redis. Masukkan arahan (nilai kunci kata kerja). Menyediakan parameter yang diperlukan (berbeza dari arahan ke arahan). Tekan Enter untuk melaksanakan arahan. Redis mengembalikan tindak balas yang menunjukkan hasil operasi (biasanya OK atau -r).

Menggunakan REDIS untuk mengunci operasi memerlukan mendapatkan kunci melalui arahan SETNX, dan kemudian menggunakan perintah luput untuk menetapkan masa tamat tempoh. Langkah-langkah khusus adalah: (1) Gunakan arahan SETNX untuk cuba menetapkan pasangan nilai utama; (2) Gunakan perintah luput untuk menetapkan masa tamat tempoh untuk kunci; (3) Gunakan perintah DEL untuk memadam kunci apabila kunci tidak lagi diperlukan.

Cara terbaik untuk memahami kod sumber REDIS adalah dengan langkah demi langkah: Dapatkan akrab dengan asas -asas Redis. Pilih modul atau fungsi tertentu sebagai titik permulaan. Mulakan dengan titik masuk modul atau fungsi dan lihat baris kod mengikut baris. Lihat kod melalui rantaian panggilan fungsi. Berhati -hati dengan struktur data asas yang digunakan oleh REDIS. Kenal pasti algoritma yang digunakan oleh Redis.

Gunakan alat baris perintah redis (redis-cli) untuk mengurus dan mengendalikan redis melalui langkah-langkah berikut: Sambungkan ke pelayan, tentukan alamat dan port. Hantar arahan ke pelayan menggunakan nama arahan dan parameter. Gunakan arahan bantuan untuk melihat maklumat bantuan untuk arahan tertentu. Gunakan perintah berhenti untuk keluar dari alat baris arahan.

Kerugian data REDIS termasuk kegagalan memori, gangguan kuasa, kesilapan manusia, dan kegagalan perkakasan. Penyelesaiannya adalah: 1. 2. Salin ke beberapa pelayan untuk ketersediaan tinggi; 3. Ha dengan redis sentinel atau cluster redis; 4. Buat gambar untuk membuat sandaran data; 5. Melaksanakan amalan terbaik seperti kegigihan, replikasi, gambar, pemantauan, dan langkah -langkah keselamatan.
