使用SQL Server数据库嵌套子查询的方法
使用SQL Server数据库嵌套子查询的方法
很多SQL Server程序员对子查询(subqueries)的使用感到困惑,尤其对于嵌套子查询(即子查询中包含一个子查询)。现在,就让我们追本溯源地探究这个问题。有两种子查询类型:标准和相关。标准子查询执行一次,结果反馈给父查询。相关子查询每行执行一次,由父查询找回。在本文中,我将重点讨论嵌套子查询(nested subqueries)(我将在以后介绍相关子查询)。
试想这个问题:你想生成一个卖平垫圈的销售人员列表。你需要的数据分散在四个表格中:人员.联系方式(Person.Contact),人力资源.员工(HumanResources.Employee),销售.销售订单标题(Sales.SalesOrderHeader),销售.销售订单详情(Sales.SalesOrderDetail)。在SQL Server中,你从内压式(outside-in)写程序,但从外压式(inside-out)开始考虑非常有帮助,即可以一次解决需要的一个语句。
如果从内到外写起,可以检查Sales.SalesOrderDetail表格,在LIKE语句中匹配产品数(ProductNumber)值。你将这些行与Sales.SalesOrderHeader表格连接,从中可以获得销售人员IDs(SalesPersonIDs)。然后使用SalesPersonID连接SalesPersonID表格。最后,使用ContactID连接Person.Contact表格。
代码如下:
USE AdventureWorks ;
GO
SELECT DISTINCT c.LastName, c.FirstName
FROM Person.Contact c JOIN HumanResources.Employee e
ON e.ContactID = c.ContactID WHERE EmployeeID IN
(SELECT SalesPersonID
FROM Sales.SalesOrderHeader
WHERE SalesOrderID IN
(SELECT SalesOrderID
FROM Sales.SalesOrderDetail
WHERE ProductID IN
(SELECT ProductID
FROM Production.Product p
WHERE ProductNumber LIKE'FW%')));
GO
这个例子揭示了有关SQL Server的几个绝妙事情。你可以发现,可以用IN()参数替代SELECT 语句。在本例中,有两次应用,因此创建了一个嵌套子查询。
我是标准化(normalization)的发烧友,尽管我不接受其荒谬的长度。由于标准化具有各种查询而增加了复杂性。在这些情况下子查询就显得非常有用,嵌套子查询甚至更加有用。
当你需要的问题分散于很多表格中时,你必须再次将它们拼在一起,这时你可能发现嵌套子程序就很有用。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Artikel ini membincangkan menggunakan pernyataan jadual Alter MySQL untuk mengubah suai jadual, termasuk menambah/menjatuhkan lajur, menamakan semula jadual/lajur, dan menukar jenis data lajur.

Artikel membincangkan mengkonfigurasi penyulitan SSL/TLS untuk MySQL, termasuk penjanaan sijil dan pengesahan. Isu utama menggunakan implikasi keselamatan sijil yang ditandatangani sendiri. [Kira-kira aksara: 159]

Keupayaan carian teks penuh InnoDB sangat kuat, yang dapat meningkatkan kecekapan pertanyaan pangkalan data dan keupayaan untuk memproses sejumlah besar data teks. 1) InnoDB melaksanakan carian teks penuh melalui pengindeksan terbalik, menyokong pertanyaan carian asas dan maju. 2) Gunakan perlawanan dan terhadap kata kunci untuk mencari, menyokong mod boolean dan carian frasa. 3) Kaedah pengoptimuman termasuk menggunakan teknologi segmentasi perkataan, membina semula indeks dan menyesuaikan saiz cache untuk meningkatkan prestasi dan ketepatan.

Artikel membincangkan alat MySQL GUI yang popular seperti MySQL Workbench dan PHPMyAdmin, membandingkan ciri dan kesesuaian mereka untuk pemula dan pengguna maju. [159 aksara]

Artikel membincangkan strategi untuk mengendalikan dataset besar di MySQL, termasuk pembahagian, sharding, pengindeksan, dan pengoptimuman pertanyaan.

Artikel ini membincangkan jadual menjatuhkan di MySQL menggunakan pernyataan Jadual Drop, menekankan langkah berjaga -jaga dan risiko. Ia menyoroti bahawa tindakan itu tidak dapat dipulihkan tanpa sandaran, memperincikan kaedah pemulihan dan bahaya persekitaran pengeluaran yang berpotensi.

Artikel membincangkan menggunakan kunci asing untuk mewakili hubungan dalam pangkalan data, memberi tumpuan kepada amalan terbaik, integriti data, dan perangkap umum untuk dielakkan.

Artikel ini membincangkan membuat indeks pada lajur JSON dalam pelbagai pangkalan data seperti PostgreSQL, MySQL, dan MongoDB untuk meningkatkan prestasi pertanyaan. Ia menerangkan sintaks dan faedah mengindeks laluan JSON tertentu, dan menyenaraikan sistem pangkalan data yang disokong.
