Python切片知识解析
切片原型 strs = ‘abcdefg'
Strs[start: end:step]
切片的三个参数分别表开始,结束,步长
第一位下标为0,end位不取,如strs[1:3] = ‘bc'
如果start,end超出现有数组范围,按实际范围截断strs[-100:100]='abcdefg'
Step为空时,缺省值为1
Strs[1:5] = ‘bcde' strs[1:5:2] = ‘bd'
Step为正时,start Strs[5:1] = ‘' Start为空,默认为负无穷 strs[:4] = ‘abcd' End为空,默认为正无穷 strs[2:] = ‘cdefg' Strs[:] = ‘abcdefg' Step为负时, start>end, 否则为空 Start为空,默认为正无穷 strs[:2:-1] = ‘gfed' End为空,默认为负无穷 strs[4::-1] = ‘edcba' Strs[::-1] = ‘gfedcba' python 切片 切片操作符是序列名后跟一个方括号,方括号中有一对可选的数字,并用冒号分割。注意这与你使用的索引操作符十分相似。记住数是可选的,而冒号是必须的。 切片操作符中的第一个数(冒号之前)表示切片开始的位置,第二个数(冒号之后)表示切片到哪里结束,第三个数(冒号之后)表示切片间隔数。如果不指定第一个数,Python就从序列首开始。如果没有指定第二个数,则Python会停止在序列尾。注意,返回的序列从开始位置开始 ,刚好在 结束 位置之前结束。即开始位置是包含在序列切片中的,而结束位置被排斥在切片外。 这样,shoplist[1:3]返回从位置1开始,包括位置2,但是停止在位置3的一个序列切片,因此返回一个含有两个项目的切片。类似地,shoplist[:]返回整个序列的拷贝。shoplist[::3]返回位置3,位置6,位置9…的序列切片。 你可以用负数做切片。负数用在从序列尾开始计算的位置。例如,shoplist[:-1]会返回除了最后一个项目外包含所有项目的序列切片,shoplist[::-1]会返回倒序序列切片。 使用Python解释器交互地尝试不同切片指定组合,即在提示符下你能够马上看到结果。序列的神奇之处在于你可以用相同的方法访问元组、列表和字符串。
Strs[1:5:-1] = ‘'

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Artikel ini membimbing pemaju Python mengenai bangunan baris baris komando (CLI). Butirannya menggunakan perpustakaan seperti Typer, Klik, dan ArgParse, menekankan pengendalian input/output, dan mempromosikan corak reka bentuk mesra pengguna untuk kebolehgunaan CLI yang lebih baik.

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Artikel ini membincangkan peranan persekitaran maya di Python, memberi tumpuan kepada menguruskan kebergantungan projek dan mengelakkan konflik. Ia memperincikan penciptaan, pengaktifan, dan faedah mereka dalam meningkatkan pengurusan projek dan mengurangkan isu pergantungan.
