在类Unix系统上开始Python3编程入门
假设有个python脚本script.py,不管哪种Unix平台,都可以在命令行上通过解释器执行:
$ python script.py
Unix平台还可以在不明确指定python解释器的情况下,自动执行python解释器,这需要在python脚本的第一行添加如下shell魔术字符串:
#!/usr/bin/python
在#!之后写上python解释器的完整路径,通常在/usr/bin或/usr/local/bin目录下。还有一种方法是使用env这个命令,位于/bin或/usr/bin中,它会帮你在系统搜索路径中找到python解释器,python脚本的第一行就可以修改如下:
#!/usr/bin/env python
这样,执行python脚本时,就不必显式地调用python解释器了,只需要键入脚本的文件名即可:
$ script.py
在 Python 3 中接触的第一个很大的差异就是缩进是作为语法的一部分,这和C++等其他语言确实很不一样,所以要小心咯
缩进要使用4个空格(这不是必须的,但你最好这么做),缩进表示一个代码块的开始,非缩进表示一个代码的结束。没有明确的大括号、中括号、或者关键字。这意味着空白很重要,而且必须要是一致的。第一个没有缩进的行标记了代码块,意思是指函数,if 语句、 for 循环、 while 循环等等的结束。
不过这样的规定也使得 Python 程序写出来会更加美观,便于阅读,吐槽是没有用的,接受吧...o(╯□╰)o
Python 思想:
“一切都是对象!”
输入很简单
x = input("Please input x:") Please input x:
在代码最后加上
input("Press Enter")
就可以让程序运行完后停一下
输出的 print 函数总结:
1. 字符串和数值类型
可以直接输出
>>> print(1) 1 >>> print("Hello World") Hello World
2.变量
无论什么类型,数值,布尔,列表,字典...都可以直接输出
>>> x = 12 >>> print(x) 12 >>> s = 'Hello' >>> print(s) Hello >>> L = [1,2,'a'] >>> print(L) [1, 2, 'a'] >>> t = (1,2,'a') >>> print(t) (1, 2, 'a') >>> d = {'a':1, 'b':2} >>> print(d) {'a': 1, 'b': 2}
3.格式化输出
类似于C中的 printf
>>> s 'Hello' >>> x = len(s) >>> print("The length of %s is %d" % (s,x)) The length of Hello is 5
看看《Python基础编程》中对格式化输出的总结:
(1). %字符:标记转换说明符的开始
(2). 转换标志:-表示左对齐;+表示在转换值之前要加上正负号;“”(空白字符)表示正数之前保留空格;0表示转换值若位数不够则用0填充
(3). 最小字段宽度:转换后的字符串至少应该具有该值指定的宽度。如果是*,则宽度会从值元组中读出。
(4). 点(.)后跟精度值:如果转换的是实数,精度值就表示出现在小数点后的位数。如果转换的是字符串,那么该数字就表示最大字段宽度。如果是*,那么精度将从元组中读出
(5).字符串格式化转换类型
转换类型 含义
d,i 带符号的十进制整数
o 不带符号的八进制
u 不带符号的十进制
x 不带符号的十六进制(小写)
X 不带符号的十六进制(大写)
e 科学计数法表示的浮点数(小写)
E 科学计数法表示的浮点数(大写)
f,F 十进制浮点数
g 如果指数大于-4或者小于精度值则和e相同,其他情况和f相同
G 如果指数大于-4或者小于精度值则和E相同,其他情况和F相同
C 单字符(接受整数或者单字符字符串)
r 字符串(使用repr转换任意python对象)
s 字符串(使用str转换任意python对象)
>>> pi = 3.141592653 >>> print('%10.3f' % pi) #字段宽10,精度3 3.142 >>> print("pi = %.*f" % (3,pi)) #用*从后面的元组中读取字段宽度或精度 pi = 3.142 >>> print('%010.3f' % pi) #用0填充空白 000003.142 >>> print('%-10.3f' % pi) #左对齐 3.142 >>> print('%+f' % pi) #显示正负号 +3.141593
4.如何让 print 不换行
在Python中总是默认换行的
>>> for x in range(0,10): print(x) 0 1 2 3 4 5 6 7 8 9
但在 3.x 中这样不起任何作用
要想换行你应该写成 print(x,end = '' )
>>> for x in range(0,10): print (x,end = '') 0123456789
拼接字符串:
>>> "Hello""World" 'HelloWorld' >>> x = "Hello" >>> y = "world" >>> xy Traceback (most recent call last): File "<pyshell#10>", line 1, in <module> xy NameError: name 'xy' is not defined >>> x+y 'Helloworld'

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyebaran bukan sahaja boleh meniru lebih baik, tetapi juga "mencipta". Model resapan (DiffusionModel) ialah model penjanaan imej. Berbanding dengan algoritma yang terkenal seperti GAN dan VAE dalam bidang AI, model resapan mengambil pendekatan yang berbeza. Idea utamanya ialah proses menambah hingar pada imej dan kemudian secara beransur-ansur menolaknya. Cara mengecilkan dan memulihkan imej asal adalah bahagian teras algoritma. Algoritma akhir mampu menghasilkan imej daripada imej bising rawak. Dalam beberapa tahun kebelakangan ini, pertumbuhan luar biasa AI generatif telah membolehkan banyak aplikasi menarik dalam penjanaan teks ke imej, penjanaan video dan banyak lagi. Prinsip asas di sebalik alat generatif ini ialah konsep resapan, mekanisme pensampelan khas yang mengatasi batasan kaedah sebelumnya.

Kimi: Hanya dalam satu ayat, dalam sepuluh saat sahaja, PPT akan siap. PPT sangat menjengkelkan! Untuk mengadakan mesyuarat, anda perlu mempunyai PPT; untuk menulis laporan mingguan, anda perlu mempunyai PPT untuk membuat pelaburan, anda perlu menunjukkan PPT walaupun anda menuduh seseorang menipu, anda perlu menghantar PPT. Kolej lebih seperti belajar jurusan PPT Anda menonton PPT di dalam kelas dan melakukan PPT selepas kelas. Mungkin, apabila Dennis Austin mencipta PPT 37 tahun lalu, dia tidak menyangka satu hari nanti PPT akan berleluasa. Bercakap tentang pengalaman sukar kami membuat PPT membuatkan kami menitiskan air mata. "Ia mengambil masa tiga bulan untuk membuat PPT lebih daripada 20 muka surat, dan saya menyemaknya berpuluh-puluh kali. Saya rasa ingin muntah apabila saya melihat PPT itu." ialah PPT." Jika anda mengadakan mesyuarat dadakan, anda harus melakukannya

Pada awal pagi 20 Jun, waktu Beijing, CVPR2024, persidangan penglihatan komputer antarabangsa teratas yang diadakan di Seattle, secara rasmi mengumumkan kertas kerja terbaik dan anugerah lain. Pada tahun ini, sebanyak 10 kertas memenangi anugerah, termasuk 2 kertas terbaik dan 2 kertas pelajar terbaik Selain itu, terdapat 2 pencalonan kertas terbaik dan 4 pencalonan kertas pelajar terbaik. Persidangan teratas dalam bidang visi komputer (CV) ialah CVPR, yang menarik sejumlah besar institusi penyelidikan dan universiti setiap tahun. Mengikut statistik, sebanyak 11,532 kertas telah diserahkan tahun ini, 2,719 daripadanya diterima, dengan kadar penerimaan 23.6%. Menurut analisis statistik data CVPR2024 Institut Teknologi Georgia, dari perspektif topik penyelidikan, bilangan kertas terbesar ialah sintesis dan penjanaan imej dan video (Imageandvideosyn

Kami tahu bahawa LLM dilatih pada kelompok komputer berskala besar menggunakan data besar-besaran Tapak ini telah memperkenalkan banyak kaedah dan teknologi yang digunakan untuk membantu dan menambah baik proses latihan LLM. Hari ini, perkara yang ingin kami kongsikan ialah artikel yang mendalami teknologi asas dan memperkenalkan cara menukar sekumpulan "logam kosong" tanpa sistem pengendalian pun menjadi gugusan komputer untuk latihan LLM. Artikel ini datang daripada Imbue, sebuah permulaan AI yang berusaha untuk mencapai kecerdasan am dengan memahami cara mesin berfikir. Sudah tentu, mengubah sekumpulan "logam kosong" tanpa sistem pengendalian menjadi gugusan komputer untuk latihan LLM bukanlah proses yang mudah, penuh dengan penerokaan dan percubaan dan kesilapan, tetapi Imbue akhirnya berjaya melatih LLM dengan 70 bilion parameter proses terkumpul

Sebagai bahasa pengaturcaraan yang digunakan secara meluas, bahasa C merupakan salah satu bahasa asas yang mesti dipelajari bagi mereka yang ingin melibatkan diri dalam pengaturcaraan komputer. Walau bagaimanapun, bagi pemula, mempelajari bahasa pengaturcaraan baharu boleh menjadi sukar, terutamanya disebabkan kekurangan alat pembelajaran dan bahan pengajaran yang berkaitan. Dalam artikel ini, saya akan memperkenalkan lima perisian pengaturcaraan untuk membantu pemula memulakan bahasa C dan membantu anda bermula dengan cepat. Perisian pengaturcaraan pertama ialah Code::Blocks. Code::Blocks ialah persekitaran pembangunan bersepadu sumber terbuka (IDE) percuma untuk

Tajuk: Wajib dibaca untuk pemula teknikal: Analisis kesukaran bahasa C dan Python, memerlukan contoh kod khusus Dalam era digital hari ini, teknologi pengaturcaraan telah menjadi keupayaan yang semakin penting. Sama ada anda ingin bekerja dalam bidang seperti pembangunan perisian, analisis data, kecerdasan buatan, atau hanya belajar pengaturcaraan kerana minat, memilih bahasa pengaturcaraan yang sesuai ialah langkah pertama. Di antara banyak bahasa pengaturcaraan, bahasa C dan Python adalah dua bahasa pengaturcaraan yang digunakan secara meluas, masing-masing mempunyai ciri tersendiri. Artikel ini akan menganalisis tahap kesukaran bahasa C dan Python

Editor Laporan Kuasa Mesin: Yang Wen Gelombang kecerdasan buatan yang diwakili oleh model besar dan AIGC telah mengubah cara kita hidup dan bekerja secara senyap-senyap, tetapi kebanyakan orang masih tidak tahu cara menggunakannya. Oleh itu, kami telah melancarkan lajur "AI dalam Penggunaan" untuk memperkenalkan secara terperinci cara menggunakan AI melalui kes penggunaan kecerdasan buatan yang intuitif, menarik dan padat serta merangsang pemikiran semua orang. Kami juga mengalu-alukan pembaca untuk menyerahkan kes penggunaan yang inovatif dan praktikal. Pautan video: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Baru-baru ini, vlog kehidupan seorang gadis yang tinggal bersendirian menjadi popular di Xiaohongshu. Animasi gaya ilustrasi, ditambah dengan beberapa perkataan penyembuhan, boleh diambil dengan mudah dalam beberapa hari sahaja.

Retrieval-augmented generation (RAG) ialah teknik yang menggunakan perolehan semula untuk meningkatkan model bahasa. Secara khusus, sebelum model bahasa menjana jawapan, ia mendapatkan semula maklumat yang berkaitan daripada pangkalan data dokumen yang luas dan kemudian menggunakan maklumat ini untuk membimbing proses penjanaan. Teknologi ini boleh meningkatkan ketepatan dan perkaitan kandungan dengan banyak, mengurangkan masalah halusinasi dengan berkesan, meningkatkan kelajuan kemas kini pengetahuan, dan meningkatkan kebolehkesanan penjanaan kandungan. RAG sudah pasti salah satu bidang penyelidikan kecerdasan buatan yang paling menarik. Untuk butiran lanjut tentang RAG, sila rujuk artikel lajur di tapak ini "Apakah perkembangan baharu dalam RAG, yang pakar dalam menebus kekurangan model besar?" Ulasan ini menerangkannya dengan jelas." Tetapi RAG tidak sempurna, dan pengguna sering menghadapi beberapa "titik kesakitan" apabila menggunakannya. Baru-baru ini, penyelesaian AI generatif termaju NVIDIA
