基于scrapy实现的简单蜘蛛采集程序
本文实例讲述了基于scrapy实现的简单蜘蛛采集程序。分享给大家供大家参考。具体如下:
# Standard Python library imports # 3rd party imports from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor from scrapy.selector import HtmlXPathSelector # My imports from poetry_analysis.items import PoetryAnalysisItem HTML_FILE_NAME = r'.+\.html' class PoetryParser(object): """ Provides common parsing method for poems formatted this one specific way. """ date_pattern = r'(\d{2} \w{3,9} \d{4})' def parse_poem(self, response): hxs = HtmlXPathSelector(response) item = PoetryAnalysisItem() # All poetry text is in pre tags text = hxs.select('//pre/text()').extract() item['text'] = ''.join(text) item['url'] = response.url # head/title contains title - a poem by author title_text = hxs.select('//head/title/text()').extract()[0] item['title'], item['author'] = title_text.split(' - ') item['author'] = item['author'].replace('a poem by', '') for key in ['title', 'author']: item[key] = item[key].strip() item['date'] = hxs.select("//p[@class='small']/text()").re(date_pattern) return item class PoetrySpider(CrawlSpider, PoetryParser): name = 'example.com_poetry' allowed_domains = ['www.example.com'] root_path = 'someuser/poetry/' start_urls = ['http://www.example.com/someuser/poetry/recent/', 'http://www.example.com/someuser/poetry/less_recent/'] rules = [Rule(SgmlLinkExtractor(allow=[start_urls[0] + HTML_FILE_NAME]), callback='parse_poem'), Rule(SgmlLinkExtractor(allow=[start_urls[1] + HTML_FILE_NAME]), callback='parse_poem')]
希望本文所述对大家的Python程序设计有所帮助。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Scrapy melaksanakan rangkak artikel dan analisis akaun awam WeChat WeChat ialah aplikasi media sosial yang popular dalam beberapa tahun kebelakangan ini, dan akaun awam yang dikendalikan di dalamnya juga memainkan peranan yang sangat penting. Seperti yang kita sedia maklum, akaun awam WeChat adalah lautan maklumat dan pengetahuan, kerana setiap akaun awam boleh menerbitkan artikel, mesej grafik dan maklumat lain. Maklumat ini boleh digunakan secara meluas dalam banyak bidang, seperti laporan media, penyelidikan akademik, dsb. Jadi, artikel ini akan memperkenalkan cara menggunakan rangka kerja Scrapy untuk merangkak dan menganalisis artikel akaun awam WeChat. Scr

Scrapy ialah rangka kerja perangkak Python sumber terbuka yang boleh mendapatkan data daripada tapak web dengan cepat dan cekap. Walau bagaimanapun, banyak tapak web menggunakan teknologi pemuatan tak segerak Ajax, menjadikannya mustahil untuk Scrapy mendapatkan data secara langsung. Artikel ini akan memperkenalkan kaedah pelaksanaan Scrapy berdasarkan pemuatan tak segerak Ajax. 1. Prinsip pemuatan tak segerak Ajax Pemuatan tak segerak Ajax: Dalam kaedah pemuatan halaman tradisional, selepas pelayar menghantar permintaan kepada pelayan, ia mesti menunggu pelayan mengembalikan respons dan memuatkan keseluruhan halaman sebelum meneruskan ke langkah seterusnya.

Scrapy ialah rangka kerja perangkak berasaskan Python yang boleh mendapatkan maklumat berkaitan dengan cepat dan mudah di Internet. Dalam artikel ini, kami akan menggunakan kes Scrapy untuk menganalisis secara terperinci cara merangkak maklumat syarikat di LinkedIn. Tentukan URL sasaran Mula-mula, kita perlu menjelaskan dengan jelas bahawa sasaran kita ialah maklumat syarikat di LinkedIn. Oleh itu, kita perlu mencari URL halaman maklumat syarikat LinkedIn. Buka laman web LinkedIn, masukkan nama syarikat dalam kotak carian, dan

Menggunakan Selenium dan PhantomJSScrapy dalam perangkak Scrapy Scrapy ialah rangka kerja perangkak web yang sangat baik di bawah Python dan telah digunakan secara meluas dalam pengumpulan dan pemprosesan data dalam pelbagai bidang. Dalam pelaksanaan perangkak, kadangkala perlu untuk mensimulasikan operasi penyemak imbas untuk mendapatkan kandungan yang dibentangkan oleh tapak web tertentu Dalam kes ini, Selenium dan PhantomJS diperlukan. Selenium mensimulasikan operasi manusia pada penyemak imbas, membolehkan kami mengautomasikan ujian aplikasi web

Scrapy ialah rangka kerja perangkak Python yang berkuasa yang boleh digunakan untuk mendapatkan sejumlah besar data daripada Internet. Walau bagaimanapun, apabila membangunkan Scrapy, kami sering menghadapi masalah merangkak URL pendua, yang membuang banyak masa dan sumber serta menjejaskan kecekapan. Artikel ini akan memperkenalkan beberapa teknik pengoptimuman Scrapy untuk mengurangkan rangkak URL pendua dan meningkatkan kecekapan perangkak Scrapy. 1. Gunakan atribut start_urls dan allowed_domains dalam perangkak Scrapy untuk

Scrapy ialah rangka kerja perangkak Python yang berkuasa yang boleh membantu kami mendapatkan data di Internet dengan cepat dan fleksibel. Dalam proses merangkak sebenar, kami sering menghadapi pelbagai format data seperti HTML, XML dan JSON. Dalam artikel ini, kami akan memperkenalkan cara menggunakan Scrapy untuk merangkak ketiga-tiga format data ini masing-masing. 1. Merangkak data HTML dan mencipta projek Scrapy Pertama, kita perlu membuat projek Scrapy. Buka baris arahan dan masukkan arahan berikut: scrapys

Dengan perkembangan Internet, orang ramai semakin bergantung kepada Internet untuk mendapatkan maklumat. Bagi pencinta buku, Douban Books telah menjadi platform yang sangat diperlukan. Di samping itu, Douban Books juga menyediakan banyak penilaian dan ulasan buku, membolehkan pembaca memahami buku dengan lebih komprehensif. Walau bagaimanapun, mendapatkan maklumat ini secara manual adalah sama dengan mencari jarum dalam timbunan jerami Pada masa ini, kita boleh menggunakan alat Scrapy untuk merangkak data. Scrapy ialah rangka kerja perangkak web sumber terbuka berdasarkan Python, yang boleh membantu kami dengan cekap

Bertindak buruk: Merangkak data berita Baidu Dengan perkembangan Internet, cara utama orang ramai mendapatkan maklumat telah beralih daripada media tradisional kepada Internet, dan orang ramai semakin bergantung pada Internet untuk mendapatkan maklumat berita. Bagi penyelidik atau penganalisis, sejumlah besar data diperlukan untuk analisis dan penyelidikan. Oleh itu, artikel ini akan memperkenalkan cara menggunakan Scrapy untuk merangkak data berita Baidu. Scrapy ialah rangka kerja perangkak Python sumber terbuka yang boleh merangkak data tapak web dengan cepat dan cekap. Scrapy menyediakan fungsi menghurai dan merangkak halaman web yang berkuasa
