Jadual Kandungan
不懂技术的人不要对懂技术的人说这很容易实现
您可能感兴趣的文章
Rumah php教程 php手册 不懂技术的人不要对懂技术的人说这很容易实现

不懂技术的人不要对懂技术的人说这很容易实现

Jun 13, 2016 am 09:26 AM
teknologi

不懂技术的人不要对懂技术的人说这很容易实现

“这个网站相当简单,所有你需要做的就是完成X,Y,Z。你看起来应该是技术很好,所以,我相信,你不需要花费太多时间就能把它搭建起来。”

  我时不时的就会收到这样的Email。写这些邮件的人几乎都是跟技术不沾边的人,或正在研究他们的第一个产品。起初,当听到人们这样的话,我总是十分的恼怒。他们在跟谁辩论软件开发所需要的时间?但后来我意识到,即使我自己对自己的项目预测要花去多少开发时间,我也是一筹莫展。如果连我自己都做不好,我何必对那些人恼怒呢?

  真正让我郁闷的不是他们预估的错误。问题在于他们竟然认为自己可以做出正确的估计。作为开发人员,我们经常会发现,在软件开发的问题上,一个外行人会很自然的把复杂的事情估计的很简单。

  这并不是为我们的愤怒找借口。但这引起了另外一个有趣的问题:为什么我们天生的预测复杂性的能力在遇到编程问题时会失灵?

  为了回答这个问题,让我们来认识一下我们的大脑如何估计事情的。有些事情对于一些没有经验的人也很容易预估正确,但有些事情则不然。

  我们来想想观看一个人弹吉他。即使你从来没有弹过吉他,在观看了一场弹奏《玛丽有只小羊羔(Mary had a Little Lamb)》的吉他表演后,你也能大概推测出这很简单,一个人不需要太高的技术就能演奏出来。同样,当观看了有人演奏D大调的《卡农(Pachabel’s Canon)》后,你也很容易推测出,这很复杂,需要很长时间的练习才能演奏的出来。

  为什么我们能够很迅速准确的预估这两首曲子的复杂性呢?这是跟我们用来判断一个事情简单和还是复杂的方法有关的。我们的大脑有一些现成的模式来完成这些事情,首先一个就是根据速度。这种情况下,大脑会辨别每秒钟演奏的东西。根据每秒钟演奏了多少东西,我们很容易有一个直观的判断曲子的复杂度。因为用吉他演奏一首歌是一种物理过程,一种感官上的活动,我们的大脑很容易依此来推测速度,继而转换成复杂度。

  我们还有另外一个天生的推测依据:体积。想想把一个帐篷和一栋公寓放在一起对比。即使一个人从来没有学过建筑学,他也能告诉你通常设计和建造一个帐篷会比设计和建造一栋公寓要简单。为什么?因为我们天生的会使用物理体积作为事物复杂性的一个指标。

  当然。上面说的这两种逻辑分析并不是总是100%的有效。但大多数情况下,人们就是这样干,而且很成功。大多数情况中,我们在对物理过程评估时,我们的大脑会对物理事物进行有效的关联,不需要依赖之前的经验。

  现在让我们来谈谈软件。当一个不懂技术的人试图对软件开发时间进行评估时,有两个很基本的直观指标在辅助他们:以体积为指标的复杂度和以速度为指标的复杂度。但他们没有意识到,软件跟他们想象的不一样。软件本质上不是有形物质。没有体积和速度。它的极小的组成部分可能会时不时的在电脑屏幕上闪现。正因为如此,当面对开发一个web应用时(或任何类型的软件),我们的基本直观感觉失效了。

  这第一点,速度,很显然根本不可能被外行人拿来对软件进行评估。于是很自然的,他们倾向于使用体积指标进行评估。要么是根据描述文档的页数,要么是根据软件的功能用例数或特征数。

  有时候,这种评估手段确实有效!当面对一个静态网站,没有特别的设计要求,外行人很容易用这种方法估计出开发时间。但是,通常情况下,对于软件开发,体积并不能真实有效的反映复杂度。

  不幸的是,对于软件的复杂度,唯一有效的推测方法是依据经验。而且还不是时时都好用。作为一个程序员,我知道,根据我之前开发过的相似的功能特征,我可以估计出现在的这些功能特征各自要多少开发时间。然后,我把总时间加起来,这就得到了完成整个项目需要的大致时间。然而,事实情况中,每个项目在开发过程中都遇到二、三个瓶颈。这些瓶颈会肆意的消耗程序员的大量时间,你在遇到它们之前根本不会有所预见。它们会拖住整个项目,致使工期延后数周甚至数月。

  这些是没有经验的人在评估复杂度时不会理解的。他们不明白在其他事情上都很灵的方法,为什么放到软件开发上就不灵了。所以,下一次当你听到有人说“我想你几天时间就能把它开发出来”时,不管是谁说的,都不要懊恼。深呼吸一下,告诉他这篇文章的地址,自己该干什么还干什么。

您可能感兴趣的文章

  • 在php中分别使用curl的post提交数据的方法和get获取网页数据的方法总结
  • js屏蔽鼠标键盘事件(包括鼠标右键,方向键,退格键,F5刷新键等),兼容IE和firefox
  • js限制只能输入英文字母和数字,不能输入中文和其他特殊字符的办法
  • phpmyadmin 配置文件详细的解释说明
  • 总结mysql服务器查询慢原因与解决方法
  • PHP ob_start()函数的功能要点详细说明
  • 网站上多种url都能访问同样的内容是件危险的事
  • 右击桌面新建文本文档不见了,如何恢复
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Kertas Stable Diffusion 3 akhirnya telah dikeluarkan, dan butiran seni bina didedahkan Adakah ia akan membantu untuk menghasilkan semula Sora? Kertas Stable Diffusion 3 akhirnya telah dikeluarkan, dan butiran seni bina didedahkan Adakah ia akan membantu untuk menghasilkan semula Sora? Mar 06, 2024 pm 05:34 PM

Kertas StableDiffusion3 akhirnya di sini! Model ini dikeluarkan dua minggu lalu dan menggunakan seni bina DiT (DiffusionTransformer) yang sama seperti Sora. Ia menimbulkan kekecohan apabila ia dikeluarkan. Berbanding dengan versi sebelumnya, kualiti imej yang dijana oleh StableDiffusion3 telah dipertingkatkan dengan ketara Ia kini menyokong gesaan berbilang tema, dan kesan penulisan teks juga telah dipertingkatkan, dan aksara bercelaru tidak lagi muncul. StabilityAI menegaskan bahawa StableDiffusion3 ialah satu siri model dengan saiz parameter antara 800M hingga 8B. Julat parameter ini bermakna model boleh dijalankan terus pada banyak peranti mudah alih, dengan ketara mengurangkan penggunaan AI

Adakah anda benar-benar menguasai penukaran sistem koordinat? Isu berbilang sensor yang tidak dapat dipisahkan daripada pemanduan autonomi Adakah anda benar-benar menguasai penukaran sistem koordinat? Isu berbilang sensor yang tidak dapat dipisahkan daripada pemanduan autonomi Oct 12, 2023 am 11:21 AM

Artikel perintis dan utama pertama terutamanya memperkenalkan beberapa sistem koordinat yang biasa digunakan dalam teknologi pemanduan autonomi, dan cara melengkapkan korelasi dan penukaran antara mereka, dan akhirnya membina model persekitaran bersatu. Fokus di sini adalah untuk memahami penukaran daripada kenderaan kepada badan tegar kamera (parameter luaran), penukaran kamera kepada imej (parameter dalaman) dan penukaran unit imej kepada piksel. Penukaran daripada 3D kepada 2D akan mempunyai herotan, terjemahan, dsb. Perkara utama: Sistem koordinat kenderaan dan sistem koordinat badan kamera perlu ditulis semula: sistem koordinat satah dan sistem koordinat piksel Kesukaran: herotan imej mesti dipertimbangkan Kedua-dua penyahherotan dan penambahan herotan diberi pampasan pada satah imej. 2. Pengenalan Terdapat empat sistem penglihatan secara keseluruhannya: sistem koordinat satah piksel (u, v), sistem koordinat imej (x, y), sistem koordinat kamera () dan sistem koordinat dunia (). Terdapat hubungan antara setiap sistem koordinat,

Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Feb 28, 2024 pm 07:20 PM

Ramalan trajektori memainkan peranan penting dalam pemanduan autonomi Ramalan trajektori pemanduan autonomi merujuk kepada meramalkan trajektori pemanduan masa hadapan kenderaan dengan menganalisis pelbagai data semasa proses pemanduan kenderaan. Sebagai modul teras pemanduan autonomi, kualiti ramalan trajektori adalah penting untuk kawalan perancangan hiliran. Tugas ramalan trajektori mempunyai timbunan teknologi yang kaya dan memerlukan kebiasaan dengan persepsi dinamik/statik pemanduan autonomi, peta ketepatan tinggi, garisan lorong, kemahiran seni bina rangkaian saraf (CNN&GNN&Transformer), dll. Sangat sukar untuk bermula! Ramai peminat berharap untuk memulakan ramalan trajektori secepat mungkin dan mengelakkan perangkap Hari ini saya akan mengambil kira beberapa masalah biasa dan kaedah pembelajaran pengenalan untuk ramalan trajektori! Pengetahuan berkaitan pengenalan 1. Adakah kertas pratonton teratur? A: Tengok survey dulu, hlm

DualBEV: mengatasi BEVFormer dan BEVDet4D dengan ketara, buka buku! DualBEV: mengatasi BEVFormer dan BEVDet4D dengan ketara, buka buku! Mar 21, 2024 pm 05:21 PM

Kertas kerja ini meneroka masalah mengesan objek dengan tepat dari sudut pandangan yang berbeza (seperti perspektif dan pandangan mata burung) dalam pemanduan autonomi, terutamanya cara mengubah ciri dari perspektif (PV) kepada ruang pandangan mata burung (BEV) dengan berkesan dilaksanakan melalui modul Transformasi Visual (VT). Kaedah sedia ada secara amnya dibahagikan kepada dua strategi: penukaran 2D kepada 3D dan 3D kepada 2D. Kaedah 2D-ke-3D meningkatkan ciri 2D yang padat dengan meramalkan kebarangkalian kedalaman, tetapi ketidakpastian yang wujud dalam ramalan kedalaman, terutamanya di kawasan yang jauh, mungkin menimbulkan ketidaktepatan. Manakala kaedah 3D ke 2D biasanya menggunakan pertanyaan 3D untuk mencuba ciri 2D dan mempelajari berat perhatian bagi kesesuaian antara ciri 3D dan 2D melalui Transformer, yang meningkatkan masa pengiraan dan penggunaan.

Model dunia penjanaan video adegan pemanduan berbilang paparan autonomi | Model dunia penjanaan video adegan pemanduan berbilang paparan autonomi | Oct 23, 2023 am 11:13 AM

Beberapa pemikiran peribadi pengarang Dalam bidang pemanduan autonomi, dengan pembangunan sub-tugas/penyelesaian hujung-ke-hujung berasaskan BEV, data latihan berbilang paparan berkualiti tinggi dan pembinaan adegan simulasi yang sepadan telah menjadi semakin penting. Sebagai tindak balas kepada titik kesakitan tugas semasa, "kualiti tinggi" boleh dipecahkan kepada tiga aspek: senario ekor panjang dalam dimensi berbeza: seperti kenderaan jarak dekat dalam data halangan dan sudut arah tepat semasa pemotongan kereta, dan data garis lorong. . Ini selalunya bergantung pada sejumlah besar pengumpulan data dan strategi perlombongan data yang kompleks, yang memerlukan kos yang tinggi. Nilai sebenar 3D - imej sangat konsisten: Pemerolehan data BEV semasa sering dipengaruhi oleh ralat dalam pemasangan/penentukuran sensor, peta berketepatan tinggi dan algoritma pembinaan semula itu sendiri. ini membawa saya kepada

GSLAM |. Seni bina dan penanda aras umum SLAM GSLAM |. Seni bina dan penanda aras umum SLAM Oct 20, 2023 am 11:37 AM

Tiba-tiba menemui kertas 19 tahun GSLAM: Rangka Kerja SLAM Umum dan kod sumber terbuka Penanda Aras: https://github.com/zdzhaoyong/GSLAM Pergi terus ke teks penuh dan rasai kualiti karya ini~1 Teknologi SLAM Abstrak telah mencapai banyak kejayaan baru-baru ini dan menarik ramai yang menarik perhatian syarikat berteknologi tinggi. Walau bagaimanapun, cara untuk antara muka dengan algoritma sedia ada atau yang baru muncul untuk melaksanakan penandaarasan dengan cekap pada kelajuan, kekukuhan dan mudah alih masih menjadi persoalan. Dalam kertas kerja ini, satu platform SLAM baharu yang dipanggil GSLAM dicadangkan, yang bukan sahaja menyediakan keupayaan penilaian tetapi juga menyediakan penyelidik dengan cara yang berguna untuk membangunkan sistem SLAM mereka sendiri dengan pantas.

'Minecraft' bertukar menjadi bandar AI, dan penduduk NPC memainkan peranan seperti orang sebenar 'Minecraft' bertukar menjadi bandar AI, dan penduduk NPC memainkan peranan seperti orang sebenar Jan 02, 2024 pm 06:25 PM

Sila ambil perhatian bahawa lelaki persegi ini berkerut dahi, memikirkan identiti "tetamu tidak diundang" di hadapannya. Ternyata dia berada dalam situasi berbahaya, dan apabila dia menyedari perkara ini, dia segera memulakan pencarian mental untuk mencari strategi untuk menyelesaikan masalah itu. Akhirnya, dia memutuskan untuk melarikan diri dari tempat kejadian dan kemudian mendapatkan bantuan secepat mungkin dan mengambil tindakan segera. Pada masa yang sama, orang di seberang sana memikirkan perkara yang sama seperti dia... Terdapat adegan sedemikian dalam "Minecraft" di mana semua watak dikawal oleh kecerdasan buatan. Setiap daripada mereka mempunyai latar identiti yang unik Contohnya, gadis yang disebutkan sebelum ini adalah seorang kurier berusia 17 tahun tetapi bijak dan berani. Mereka mempunyai daya ingatan dan pemikiran serta hidup seperti manusia di bandar kecil yang terletak di Minecraft ini. Apa yang mendorong mereka adalah sesuatu yang baru,

Semakan! Gabungan model mendalam (LLM/model asas/pembelajaran bersekutu/penalaan halus, dsb.) Semakan! Gabungan model mendalam (LLM/model asas/pembelajaran bersekutu/penalaan halus, dsb.) Apr 18, 2024 pm 09:43 PM

Pada 23 September, kertas kerja "DeepModelFusion:ASurvey" diterbitkan oleh Universiti Teknologi Pertahanan Nasional, JD.com dan Institut Teknologi Beijing. Gabungan/penggabungan model dalam ialah teknologi baru muncul yang menggabungkan parameter atau ramalan berbilang model pembelajaran mendalam ke dalam satu model. Ia menggabungkan keupayaan model yang berbeza untuk mengimbangi bias dan ralat model individu untuk prestasi yang lebih baik. Gabungan model mendalam pada model pembelajaran mendalam berskala besar (seperti LLM dan model asas) menghadapi beberapa cabaran, termasuk kos pengiraan yang tinggi, ruang parameter berdimensi tinggi, gangguan antara model heterogen yang berbeza, dsb. Artikel ini membahagikan kaedah gabungan model dalam sedia ada kepada empat kategori: (1) "Sambungan corak", yang menghubungkan penyelesaian dalam ruang berat melalui laluan pengurangan kerugian untuk mendapatkan gabungan model awal yang lebih baik.

See all articles