


Aplikasi Pembelajaran Mesin Golang: Membina Algoritma Pintar dan Penyelesaian Dipacu Data
Gunakan pembelajaran mesin di Golang untuk membangunkan algoritma pintar dan penyelesaian terdorong data: Pasang pustaka Gonum untuk algoritma dan utiliti pembelajaran mesin. Regresi linear menggunakan model LinearRegression Gonum, algoritma pembelajaran yang diselia. Latih model menggunakan data latihan, yang mengandungi pembolehubah input dan pembolehubah sasaran. Ramalkan harga rumah berdasarkan ciri baharu, yang daripadanya model akan mengeluarkan perhubungan linear.
Aplikasi Pembelajaran Mesin Golang: Membina Algoritma Pintar dan Penyelesaian Dipacu Data
Pengenalan
Dalam era dipacu data semasa, Pembelajaran Mesin (ML) amat diperlukan kepada kita cerapan daripada data dan membina algoritma pintar. Menggunakan Golang untuk pembelajaran mesin membolehkan aplikasi ML berprestasi tinggi dan berskala. Dalam tutorial ini, kami akan mendalami cara menggunakan perpustakaan pembelajaran mesin yang popular di Golang untuk membina algoritma pintar dan penyelesaian dipacu data.
Memasang perpustakaan
Mula-mula, kita perlu memasang perpustakaan pembelajaran mesin Golang. Kami mengesyorkan menggunakan [pustaka Gonum](https://pkg.go.dev/gonum.org/v1/gonum), yang menyediakan pelbagai jenis algoritma dan utiliti ML. Jalankan arahan berikut untuk memasang:
go get gonum.org/v1/gonum
Kes Praktikal: Regresi Linear
Sebagai kes praktikal, kami akan membina aplikasi yang menggunakan algoritma regresi linear untuk meramalkan harga perumahan. Regresi linear ialah algoritma pembelajaran diselia yang mempelajari hubungan linear antara pembolehubah input dan pembolehubah sasaran.
Tentukan model
Pertama, kita perlu menentukan pakej LinearRegression
模型,可以使用 gonum
库中的 regression
:
import ( "gonum.org/v1/gonum/mat" "gonum.org/v1/gonum/stat/regression" ) type LinearRegression struct { model *regression.LinearRegression }
Latih model
Seterusnya, kami melatih model dengan data latihan. Data latihan mengandungi ciri rumah (seperti rakaman persegi, bilangan bilik tidur) dan harga rumah.
func (r *LinearRegression) Train(data [][]float64, labels []float64) error { if len(data) == 0 || len(labels) == 0 { return errors.New("invalid data or labels") } x := mat.NewDense(len(data), len(data[0])) y := mat.NewVecDense(len(labels), labels) for i, row := range data { for j, value := range row { x.Set(i, j, value) } } r.model = regression.LinearRegression{} if err := r.model.Fit(x, y); err != nil { return err } return nil }
Meramalkan harga rumah
Setelah model dilatih, kita boleh menggunakan ciri baharu untuk meramal harga rumah:
func (r *LinearRegression) Predict(input []float64) (float64, error) { if len(input) != len(r.model.Predictors()) { return 0, errors.New("invalid input size") } x := mat.NewVecDense(len(input), input) return r.model.Predict(x), nil }
Kesimpulan
Dalam tutorial ini, kami mempelajari cara menggunakan perpustakaan pembelajaran mesin di Golang algoritma pintar. Kami menggambarkan proses latihan model dan ramalan dengan mencipta kes praktikal model regresi linear. Golang, dengan prestasi tinggi dan kebolehskalaannya, sesuai untuk membina aplikasi ML untuk menyelesaikan masalah dunia sebenar yang kompleks.
Atas ialah kandungan terperinci Aplikasi Pembelajaran Mesin Golang: Membina Algoritma Pintar dan Penyelesaian Dipacu Data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Membaca dan menulis fail dengan selamat dalam Go adalah penting. Garis panduan termasuk: Menyemak kebenaran fail Menutup fail menggunakan tangguh Mengesahkan laluan fail Menggunakan tamat masa konteks Mengikuti garis panduan ini memastikan keselamatan data anda dan keteguhan aplikasi anda.

Bagaimana untuk mengkonfigurasi pengumpulan sambungan untuk sambungan pangkalan data Go? Gunakan jenis DB dalam pakej pangkalan data/sql untuk membuat sambungan pangkalan data untuk mengawal bilangan maksimum sambungan serentak;

Perbezaan antara rangka kerja GoLang dan rangka kerja Go ditunjukkan dalam seni bina dalaman dan ciri luaran. Rangka kerja GoLang adalah berdasarkan perpustakaan standard Go dan meluaskan fungsinya, manakala rangka kerja Go terdiri daripada perpustakaan bebas untuk mencapai tujuan tertentu. Rangka kerja GoLang lebih fleksibel dan rangka kerja Go lebih mudah digunakan. Rangka kerja GoLang mempunyai sedikit kelebihan dalam prestasi dan rangka kerja Go lebih berskala. Kes: gin-gonic (rangka Go) digunakan untuk membina REST API, manakala Echo (rangka kerja GoLang) digunakan untuk membina aplikasi web.

Data JSON boleh disimpan ke dalam pangkalan data MySQL dengan menggunakan perpustakaan gjson atau fungsi json.Unmarshal. Pustaka gjson menyediakan kaedah kemudahan untuk menghuraikan medan JSON dan fungsi json.Unmarshal memerlukan penuding jenis sasaran kepada data JSON unmarshal. Kedua-dua kaedah memerlukan penyediaan pernyataan SQL dan melaksanakan operasi sisipan untuk mengekalkan data ke dalam pangkalan data.

Amalan terbaik: Cipta ralat tersuai menggunakan jenis ralat yang ditakrifkan dengan baik (pakej ralat) Sediakan lebih banyak butiran Log ralat dengan sewajarnya Sebarkan ralat dengan betul dan elakkan menyembunyikan atau menyekat ralat Balut seperti yang diperlukan untuk menambah konteks

Cara menangani isu keselamatan biasa dalam rangka kerja Go Dengan penggunaan meluas rangka kerja Go dalam pembangunan web, memastikan keselamatannya adalah penting. Berikut ialah panduan praktikal untuk menyelesaikan masalah keselamatan biasa, dengan kod sampel: 1. SQL Injection Gunakan pernyataan yang disediakan atau pertanyaan berparameter untuk mengelakkan serangan suntikan SQL. Contohnya: constquery="SELECT*FROMusersWHEREusername=?"stmt,err:=db.Prepare(query)iferr!=nil{//Handleerror}err=stmt.QueryR

Fungsi FindStringSubmatch mencari subrentetan pertama dipadankan dengan ungkapan biasa: fungsi mengembalikan hirisan yang mengandungi subrentetan yang sepadan, dengan elemen pertama ialah keseluruhan rentetan dipadankan dan elemen berikutnya ialah subrentetan individu. Contoh kod: regexp.FindStringSubmatch(teks,corak) mengembalikan sekeping subrentetan yang sepadan. Kes praktikal: Ia boleh digunakan untuk memadankan nama domain dalam alamat e-mel, contohnya: e-mel:="user@example.com", pattern:=@([^\s]+)$ untuk mendapatkan padanan nama domain [1].

Laluan Pembelajaran Backend: Perjalanan Eksplorasi dari Front-End ke Back-End sebagai pemula back-end yang berubah dari pembangunan front-end, anda sudah mempunyai asas Nodejs, ...
