Rumah > Java > javaTutorial > Bagaimanakah rangka kerja Java mempercepatkan latihan model kecerdasan buatan?

Bagaimanakah rangka kerja Java mempercepatkan latihan model kecerdasan buatan?

PHPz
Lepaskan: 2024-06-04 15:08:02
asal
910 orang telah melayarinya

Rangka kerja Java boleh mempercepatkan latihan model kecerdasan buatan dengan cara berikut: menggunakan TensorFlow Serving untuk menggunakan model pra-latihan untuk inferens pantas menggunakan AI Tanpa Pemandu H2O untuk mengautomasikan proses latihan dan menggunakan pengkomputeran teragih untuk memendekkan masa latihan menggunakan Spark MLlib untuk melaksanakan pada seni bina Apache Spark Latihan teragih dan pemprosesan set data berskala besar.

Bagaimanakah rangka kerja Java mempercepatkan latihan model kecerdasan buatan?

Bagaimana rangka kerja Java mempercepatkan latihan model kecerdasan buatan

Dalam bidang pembelajaran mesin, melatih model kecerdasan buatan (AI) selalunya merupakan proses yang memakan masa. Untuk menangani cabaran ini, pembangun Java boleh memanfaatkan rangka kerja khusus untuk mempercepatkan latihan dengan ketara.

TensorFlow Serving

TensorFlow Serving ialah rangka kerja peringkat pengeluaran yang dibangunkan oleh Google untuk menggunakan model terlatih ke persekitaran pengeluaran. Ia menyediakan API inferens yang cekap untuk menjana ramalan dengan cepat daripada model pra-latihan.

// 使用 TensorFlow Serving 加载预训练模型
Model model = Model.加载("./my_model");

// 输入模型并获得预测
Tensor input = ....;
Tensor output = model.predict(input);
Salin selepas log masuk

H2O AI Tanpa Pemandu AI

H2O AI Tanpa Pemandu AI ialah platform pembelajaran mesin automatik yang mengautomasikan penyediaan data, latihan model dan proses penggunaan. Platform ini menggunakan pengkomputeran teragih dan teknologi pemprosesan selari untuk mengurangkan masa latihan dengan ketara.

// 使用 Driverless AI 训练模型
AutoML model = AutoML.train(data);

// 从训练好的模型中生成预测
Predictor predictor = Predictor.fromModel(model);
Prediction prediction = predictor.predict(data);
Salin selepas log masuk

Spark MLlib

Spark MLlib ialah perpustakaan pembelajaran mesin untuk Apache Spark, yang menyediakan algoritma pembelajaran mesin berprestasi tinggi berdasarkan seni bina Apache Spark. Spark MLlib menyokong latihan teragih dan pengkomputeran asli awan, menjadikan latihan pada set data berskala besar mungkin.

// 使用 Spark MLlib 训练线性回归模型
LinearRegression lr = new LinearRegression();
lr.fit(trainingData);

// 使用训练好的模型进行预测
Transformer transformer = lr.fit(trainingData);
prediction = transformer.transform( testData);
Salin selepas log masuk

Kes Praktikal: Klasifikasi Imej

Dalam kes praktikal yang menggunakan rangka kerja Java untuk mempercepatkan latihan model klasifikasi imej, TensorFlow Serving digunakan untuk menggunakan model terlatih dan memberikan inferens yang cekap. Dengan menggunakan kluster TensorFlow yang diedarkan, latihan adalah lebih pantas, membolehkan model bertindak balas dengan pantas kepada permintaan pengelasan imej dalam pengeluaran.

Rangka kerja Java menjadikan latihan model kecerdasan buatan lebih cekap dengan menyediakan alatan berkuasa dan teknik pengoptimuman. Penggunaan rangka kerja seperti TensorFlow Serving, H2O AI Driverless AI, dan Spark MLlib boleh mengurangkan masa latihan dengan ketara dan menyokong pemprosesan set data berskala besar.

Atas ialah kandungan terperinci Bagaimanakah rangka kerja Java mempercepatkan latihan model kecerdasan buatan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan