7B? 13B? 175B? Mentafsir parameter model besar
Model besar juga berbeza dari segi saiz, dan saiznya diukur mengikut bilangan parameter. GPT-3 mempunyai 17.5 bilion parameter, dan Grok-1 lebih mengagumkan, dengan 31.4 bilion parameter. Sudah tentu, terdapat juga yang lebih langsing seperti Llama, yang bilangan parameternya hanya antara 7 bilion dan 70 bilion.
70B yang disebut di sini mungkin tidak merujuk kepada jumlah data latihan, tetapi kepada parameter padat padat dalam model. Parameter ini adalah seperti "sel otak" yang kecil. Dengan "sel otak" ini, model mungkin berprestasi lebih baik pada tugasan. Walau bagaimanapun, banyak kali parameter ini, terutamanya dalam model berskala besar, boleh menyebabkan masalah. "Sel otak" ini mungkin berinteraksi antara satu sama lain semasa memproses tugas, menyukarkan model untuk memahami hubungan kompleks dalam data. Dengan "sel otak" ini, model mungkin berprestasi lebih baik pada tugasan. Oleh itu, kita perlu mencari cara untuk menguruskan hubungan antara parameter ini semasa menjalankan tugas. Kaedah yang biasa digunakan ialah melalui penyelarasan Parameter model besar ini adalah seperti "arkitek" di dalam model Melalui algoritma yang kompleks dan proses latihan, dunia bahasa yang besar ini dibina sedikit demi sedikit. Setiap parameter mempunyai peranannya, dan ia bekerjasama untuk membolehkan model memahami bahasa kita dengan lebih tepat dan memberikan jawapan yang lebih sesuai.
Jadi, bagaimanakah parameter dalam model besar disusun?
1. Parameter dalam model besar
Parameter model besar adalah "bahagian dalamannya". wayar" dalam rangkaian menyambungkan setiap neuron. Mereka bertanggungjawab untuk melaraskan "volume" penghantaran isyarat, membolehkan maklumat penting dihantar lebih jauh dan maklumat yang kurang penting menjadi lebih senyap. Sebagai contoh, dalam lapisan bersambung sepenuhnya, matriks berat W ialah "peta" yang memberitahu kita ciri input yang paling berkait rapat dengan ciri output.
Biases: Bias adalah seperti "pembantu kecil" neuron, bertanggungjawab untuk menetapkan garis asas untuk tindak balas neuron. Dengan itu, neuron tahu pada tahap mana mereka harus aktif.
- Parameter Perhatian: Dalam model berasaskan Transformer, parameter ini seperti "kompas", memberitahu model maklumat yang paling patut diberi perhatian. Ia termasuk matriks pertanyaan, matriks kunci, matriks nilai, dsb., yang seperti mencari "petunjuk" paling kritikal dalam sejumlah besar maklumat.
- Membenamkan Matriks: Apabila memproses data teks, matriks benam ialah "kamus" model. Setiap lajur mewakili perkataan, dan nombor digunakan untuk mewakili perkataan. Dengan cara ini, model dapat memahami maksud teks.
- Parameter Permulaan Keadaan Tersembunyi (Parameter Keadaan Tersembunyi Permulaan): Parameter ini digunakan untuk menetapkan keadaan tersembunyi awal model, sama seperti menetapkan nada untuk model supaya ia tahu di mana untuk memulakan "berfikir".
- ......
- Parameter ini biasanya menggunakan 4 ungkapan dan format storan:
- Terapung: nombor titik terapung 32-bit, iaitu, 4 bait
Separuh/BF16: nombor titik terapung 16-bit , iaitu 2 bait
- Int8: integer 8-bit, iaitu 1 bait
- Int4: integer 4-bit, iaitu 0.5 bait
- Secara umumnya, bilangan parameter adalah faktor utama yang mempengaruhi prestasi model besar. Sebagai contoh, model 13B-int8 umumnya lebih baik daripada model 7B-BF16 dengan seni bina yang sama.
- 2. Keperluan memori untuk parameter model besar
- Bilangan bait yang disalin oleh parameter model , untuk mengekalkan latihan yang stabil dan mengelakkan anomali berangka.
- Ini bermakna memori berikut diperlukan untuk menyimpan semua status model dan memproses data semasa latihan: (x+y+12) * model_size
- 2.2 Keperluan memori untuk fasa inferens
Fasa inferens dilengkapkan menggunakan pra- Tugasan LLM terlatih seperti penjanaan teks atau terjemahan. Di sini, keperluan ingatan biasanya lebih rendah, dengan faktor utama yang mempengaruhi ialah:
Konteks terhad: Inferens biasanya berkaitan dengan jujukan input yang lebih pendek, memerlukan kurang memori untuk menyimpan pengaktifan yang dikaitkan dengan ketulan teks yang lebih kecil. Tiada perambatan balik: Semasa inferens, LLM tidak perlu mengekalkan nilai perantaraan perambatan balik, teknik yang digunakan untuk latihan melaraskan parameter. Ini menghapuskan banyak overhed memori.- Fasa inferens tidak memerlukan lebih daripada satu perempat daripada memori yang diperlukan untuk fasa latihan untuk kiraan dan jenis parameter yang sama. Sebagai contoh, untuk model 7B, secara amnya, menggunakan ketepatan titik terapung memerlukan memori 28GB, menggunakan ketepatan BF16 memerlukan memori 14GB, dan menggunakan ketepatan int8 memerlukan memori 7GB. Kaedah anggaran kasar ini boleh digunakan pada versi lain model dengan sewajarnya.
- Selain itu, apabila menala LLM untuk tugasan tertentu, penalaan halus memerlukan jejak memori yang lebih tinggi. Penalaan halus biasanya melibatkan urutan latihan yang lebih panjang untuk menangkap nuansa tugas sasaran. Ini akan membawa kepada pengaktifan yang lebih besar kerana LLM memproses lebih banyak data teks. Proses perambatan belakang memerlukan penyimpanan nilai perantaraan untuk pengiraan kecerunan, yang digunakan untuk mengemas kini berat model semasa latihan. Ini menambah beban memori yang ketara berbanding dengan inferens.
2.3 Anggaran memori model besar berdasarkan Transformer
Khususnya, untuk model besar berdasarkan Transformer, cuba kira memori yang diperlukan untuk latihan, di mana mari:
l: bilangan lapisan transformera: The bilangan ketua perhatian- b: Saiz kelompok
- s: Panjang jujukan
- h: Saiz dimensi lapisan tersembunyi
- p: Ketepatan
- Di sini, bshp = b * s * h * p mewakili input data sebesar. Dalam bahagian lapisan linear pengubah, kira-kira 9bshp+bsh ruang diperlukan untuk pengaktifan seterusnya. Di bahagian perhatian, perhatian diri boleh dinyatakan sebagai: softmax((XQ)(XK)^T)XV
- Kemudian, XQ, XK, dan XV semuanya memerlukan ruang bersaiz bshp. Dalam perhatian kendiri standard, hasil darab (XQ) * (XK) ^ T hanyalah matriks b * s * s yang mengandungi logit. Walau bagaimanapun, dalam amalan, disebabkan penggunaan mekanisme perhatian berbilang kepala, ruang simpanan s * s yang berasingan perlu diwujudkan untuk setiap kepala. Ini bermakna bait abssp ruang diperlukan, dan menyimpan output softmax juga memerlukan bait abssp. Selepas softmax, bait abss tambahan biasanya diperlukan untuk menyimpan topeng, jadi bahagian perhatian memerlukan ruang penyimpanan 2abssp+abss.
Selain itu, terdapat dua lapisan Norm dalam transformer, yang setiap satunya masih memerlukan ruang penyimpanan bshp, untuk jumlah 2 bshp.
Jadi, memori yang diperlukan untuk latihan model besar berdasarkan Transformer adalah lebih kurang: L(9bshp+bsh+2abssp+abss +2bshp) = Lbshp[16+2/p+(as/h)(2+1/p)]
Jelaskan bahawa memori yang diperlukan untuk melatih model besar berdasarkan Transformer adalah lebih kurang: bilangan lapisan model x saiz kumpulan latihan x panjang urutan x dimensi lapisan tersembunyi x ketepatan A batas bawah teori mengenai keperluan memori parameter model semasa latihan.
3. Keperluan GPU untuk parameter model besar
Dengan keperluan memori untuk parameter model besar, kami boleh menganggarkan lagi bilangan GPU yang diperlukan untuk latihan dan inferens model besar. Walau bagaimanapun, memandangkan anggaran bilangan GPU bergantung pada lebih banyak parameter, seseorang (Dr. Walid Soula, https://medium.com/u/e41a20d646a8) memberikan formula mudah untuk anggaran kasar, yang juga mempunyai kepentingan rujukan tertentu dalam kejuruteraan.
Picture
di mana, parametermodel dalam berbilion -bilion adalah bilangan parameter model dalam b; Faktor, Pengaktifan ialah struktur data dinamik yang berubah apabila model memproses data input.
- Sebagai contoh praktikal, dengan mengandaikan anda menggunakan GPU NVIDIA RTX 4090, yang mempunyai 24GB VRAM, hitung bilangan GPU yang diperlukan untuk melatih 'Llama3 7B ' model , lebih kurang:
- Jumlah bilangan GPU≈(7 * 18 * 1.25)/24, iaitu lebih kurang sama dengan 7
-
Untuk inferens, ia boleh dipermudahkan kepada 1/8~1/9 daripada peringkat latihan Sudah tentu, ini hanya anggaran kasar dalam pengertian umum.
4. Daripada parameter model besar kepada latihan teragih
Memahami komposisi parameter model besar dan keperluannya untuk memori dan GPU akan membantu memahami cabaran yang dihadapi oleh latihan teragih dalam amalan kejuruteraan.
Proses pelaksanaan strategi latihan teragih boleh dipermudahkan dengan ketara dengan menggunakan rangka kerja yang direka bentuk untuk latihan teragih, seperti TensorFlow atau PyTorch, yang menyediakan alatan dan API yang kaya. Dengan menggunakan teknik seperti pengumpulan kecerunan sebelum mengemas kini model, atau menggunakan teknik seperti pemampatan kecerunan untuk mengurangkan jumlah pertukaran data antara nod, kos komunikasi boleh dikurangkan dengan berkesan. Adalah penting untuk menentukan saiz kelompok optimum untuk latihan teragih (parameter b yang dinyatakan di atas); nilai b yang terlalu kecil boleh meningkatkan overhed komunikasi, manakala nilai yang terlalu besar boleh menyebabkan memori tidak mencukupi.
Kepentingan LLMOps semakin menyerlah. Memantau penunjuk prestasi secara berkala yang dikonfigurasikan untuk latihan teragih dan melaraskan hiperparameter, strategi pembahagian dan tetapan komunikasi untuk mengoptimumkan prestasi adalah kunci untuk meningkatkan kecekapan latihan. Melaksanakan mekanisme pemeriksaan untuk model dan pemulihan yang cekap sekiranya berlaku kegagalan memastikan proses latihan berterusan tanpa perlu bermula dari awal.
Dalam erti kata lain, latihan/inferens model besar pada asasnya merupakan cabaran kejuruteraan seni bina sistem teragih yang kompleks, seperti:
- Overhed komunikasi: Apabila melakukan pengiraan kecerunan dan kemas kini data, masa yang diperlukan untuk komunikasi mungkin menjejaskan kesan pecutan keseluruhan .
- Kerumitan penyegerakan: Apabila berbilang mesin dilatih secara selari, kerumitan penyegerakan perlu direka bentuk dengan teliti.
- Toleransi kesalahan dan pengurusan sumber: Kesan kegagalan titik tunggal pada latihan dan inferens model, serta strategi peruntukan dan penjadualan sumber untuk CPU dan GPU.
- ...
Walau bagaimanapun, sebenarnya, kebanyakan jurutera mungkin tidak terlibat secara langsung dalam kerja latihan tertentu, tetapi memberi tumpuan kepada cara menggunakan parameter model besar semasa membina aplikasi.
Gambar
5. Parameter yang digunakan dalam aplikasi model besar
Di sini kami memberi tumpuan terutamanya pada tiga parameter yang boleh dikonfigurasikan apabila menggunakan model besar untuk mengeluarkan teks: Suhu, Top-K dan Top-P.
Parameter Suhu sering disalah ertikan sebagai suis yang hanya mengawal kreativiti model, tetapi sebenarnya peranannya yang lebih mendalam adalah untuk melaraskan "kelembutan" taburan kebarangkalian. Apabila nilai Suhu ditetapkan lebih tinggi, taburan kebarangkalian menjadi lebih lembut dan lebih seragam, yang menggalakkan model menjana output yang lebih pelbagai dan kreatif. Sebaliknya, nilai Suhu yang lebih rendah akan menjadikan pengedaran lebih tajam dan mempunyai puncak yang lebih jelas, dengan itu cenderung untuk menghasilkan output yang serupa dengan data latihan.
Parameter Top-K digunakan untuk mengehadkan model untuk mengeluarkan token Top-K yang paling mungkin pada setiap langkah Dengan cara ini, kandungan yang tidak koheren atau tidak bermakna dalam output boleh dikurangkan. Strategi ini mewujudkan keseimbangan antara mengekalkan ketekalan output yang terbaik sambil membenarkan tahap persampelan kreatif.
Top-P ialah satu lagi kaedah penyahkodan yang memilih set minimum perkataan yang kebarangkalian kumulatifnya melebihi nilai P sebagai output berdasarkan set nilai P (0≤P≤1). Kaedah ini membolehkan bilangan perkataan yang dipilih ditambah atau dikurangkan secara dinamik berdasarkan taburan kebarangkalian perkataan seterusnya. Khususnya, apabila nilai P ialah 1, Top-P akan memilih semua perkataan, yang bersamaan dengan pensampelan daripada keseluruhan pengedaran, dengan itu menghasilkan output yang lebih pelbagai manakala apabila nilai P ialah 0, Top-P hanya memilih perkataan dengan kebarangkalian tertinggi, serupa dengan penyahkodan tamak, menjadikan output lebih fokus dan konsisten.
Tiga parameter ini berfungsi bersama untuk mempengaruhi tingkah laku model. Contohnya, apabila menetapkan Suhu=0.8, Top-K=36 dan Top-P=0.7, model pertama mengira taburan kebarangkalian log tidak normal yang lengkap bagi keseluruhan perbendaharaan kata berdasarkan konteks. Suhu=0.8 bermakna setiap kebarangkalian log dibahagikan dengan 0.8, yang secara berkesan meningkatkan keyakinan model dalam ramalannya sebelum penormalan. Top-K=36 bermaksud memilih 36 penanda dengan kebarangkalian log nisbah frekuensi tertinggi. Kemudian, Top-P=0.7 menggunakan penapisan dalam set Top-K=36 ini, mengekalkan pengisihan daripada kebarangkalian tinggi ke rendah sehingga kebarangkalian kumulatif mencapai 0.7. Akhirnya, set yang ditapis ini dinormalisasi semula dan digunakan dalam proses persampelan seterusnya.
6. Ringkasan
Dalam amalan kejuruteraan, adalah bermakna untuk memahami parameter model besar. Parameter memainkan peranan penting dalam model besar Mereka mentakrifkan tingkah laku, prestasi, kos pelaksanaan dan keperluan sumber model besar. Memahami parameter model besar dalam kejuruteraan bermakna memahami hubungan antara kerumitan, prestasi dan keupayaan model. Mengkonfigurasi dan mengoptimumkan parameter ini dengan betul dari perspektif storan dan pengkomputeran boleh memilih dan mengoptimumkan model dengan lebih baik dalam aplikasi praktikal untuk menyesuaikan diri dengan keperluan tugas dan kekangan sumber yang berbeza.
【Rujukan】
- ZeRO: Pengoptimuman Memori Ke Arah Model Parameter Trilion Latihan ,https://arxiv.org/pdf/1910.02054v3.pdf
- Mengurangkan Pengiraan Semula Pengaktifan dalam Model Transformer Besar,https://arxiv.org/pdf/2205.0pdf https://timdettmers.com/2023/01/30/which-gpu-for-deep-learning/
- https://blog.eleuther.ai/transformer-math/
Atas ialah kandungan terperinci 7B? 13B? 175B? Mentafsir parameter model besar. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

Pautan projek ditulis di hadapan: https://nianticlabs.github.io/mickey/ Memandangkan dua gambar, pose kamera di antara mereka boleh dianggarkan dengan mewujudkan kesesuaian antara gambar. Biasanya, surat-menyurat ini adalah 2D hingga 2D, dan anggaran pose kami adalah skala-tak tentu. Sesetengah aplikasi, seperti realiti tambahan segera pada bila-bila masa, di mana-mana sahaja, memerlukan anggaran pose metrik skala, jadi mereka bergantung pada penganggar kedalaman luaran untuk memulihkan skala. Makalah ini mencadangkan MicKey, proses pemadanan titik utama yang mampu meramalkan korespondensi metrik dalam ruang kamera 3D. Dengan mempelajari padanan koordinat 3D merentas imej, kami dapat membuat kesimpulan relatif metrik

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi

FP8 dan ketepatan pengiraan titik terapung yang lebih rendah bukan lagi "paten" H100! Lao Huang mahu semua orang menggunakan INT8/INT4, dan pasukan Microsoft DeepSpeed memaksa diri mereka menjalankan FP6 pada A100 tanpa sokongan rasmi daripada Nvidia. Keputusan ujian menunjukkan bahawa kaedah baharu TC-FPx FP6 kuantisasi pada A100 adalah hampir atau kadangkala lebih pantas daripada INT4, dan mempunyai ketepatan yang lebih tinggi daripada yang terakhir. Selain itu, terdapat juga sokongan model besar hujung ke hujung, yang telah bersumberkan terbuka dan disepadukan ke dalam rangka kerja inferens pembelajaran mendalam seperti DeepSpeed. Keputusan ini juga mempunyai kesan serta-merta pada mempercepatkan model besar - di bawah rangka kerja ini, menggunakan satu kad untuk menjalankan Llama, daya pemprosesan adalah 2.65 kali lebih tinggi daripada dua kad. satu

Untuk menyelaraskan model bahasa besar (LLM) dengan nilai dan niat manusia, adalah penting untuk mempelajari maklum balas manusia untuk memastikan bahawa ia berguna, jujur dan tidak berbahaya. Dari segi penjajaran LLM, kaedah yang berkesan ialah pembelajaran pengukuhan berdasarkan maklum balas manusia (RLHF). Walaupun keputusan kaedah RLHF adalah cemerlang, terdapat beberapa cabaran pengoptimuman yang terlibat. Ini melibatkan latihan model ganjaran dan kemudian mengoptimumkan model dasar untuk memaksimumkan ganjaran tersebut. Baru-baru ini, beberapa penyelidik telah meneroka algoritma luar talian yang lebih mudah, salah satunya ialah pengoptimuman keutamaan langsung (DPO). DPO mempelajari model dasar secara langsung berdasarkan data keutamaan dengan meparameterkan fungsi ganjaran dalam RLHF, sekali gus menghapuskan keperluan untuk model ganjaran yang jelas. Kaedah ini mudah dan stabil

Di barisan hadapan teknologi perisian, kumpulan UIUC Zhang Lingming, bersama penyelidik dari organisasi BigCode, baru-baru ini mengumumkan model kod besar StarCoder2-15B-Instruct. Pencapaian inovatif ini mencapai kejayaan ketara dalam tugas penjanaan kod, berjaya mengatasi CodeLlama-70B-Instruct dan mencapai bahagian atas senarai prestasi penjanaan kod. Keunikan StarCoder2-15B-Instruct terletak pada strategi penjajaran diri yang tulen Keseluruhan proses latihan adalah terbuka, telus, dan sepenuhnya autonomi dan boleh dikawal. Model ini menjana beribu-ribu arahan melalui StarCoder2-15B sebagai tindak balas kepada penalaan halus model asas StarCoder-15B tanpa bergantung pada anotasi manual yang mahal.
