


Molekul adalah 100% berkesan, ligan direka dari awal, dan Universiti Hunan mencadangkan rangka kerja pencirian molekul berasaskan serpihan
Aplikasi dan cabaran deskriptor molekul
Deskriptor molekul digunakan secara meluas dalam pemodelan molekul. Walau bagaimanapun, dalam bidang penemuan molekul berbantukan AI, terdapat kekurangan perwakilan molekul yang boleh digunakan secara semula jadi, lengkap dan asli, yang menjejaskan prestasi model dan kebolehtafsiran.
Cadangan rangka kerja t-SMILES
Rangka kerja pencirian molekul pelbagai skala berasaskan serpihan t-SMILES menyelesaikan masalah pencirian molekul. Rangka kerja menggunakan rentetan jenis SMILES untuk menerangkan molekul dan menyokong model jujukan sebagai model generatif. Algoritma kod
t-SMILES
t-SMILES mempunyai tiga algoritma kod: TSSA, TSDY dan TSID.
Hasil eksperimen
Eksperimen menunjukkan bahawa molekul yang dihasilkan oleh model t-SMILES mempunyai 100% kesahan teori dan kebaharuan yang tinggi, yang lebih baik daripada model berdasarkan SOTA SMILES.
Selain itu, model t-SMILES mengelakkan pemasangan berlebihan dan mengekalkan persamaan pada set data sumber rendah berlabel sambil mencapai kebaharuan yang lebih tinggi.
Maklumat yang diterbitkan
Kajian yang bertajuk "t-SMILES: rangka kerja perwakilan molekul berasaskan serpihan untuk reka bentuk ligan de novo", telah diterbitkan dalam "Nature Communications" pada 11 Jun.
Penyelidikan kaedah perwakilan molekul berdasarkan SMILES
Pencirian molekul yang berkesan adalah faktor utama yang mempengaruhi prestasi tiruan model kecerdasan.
Graph Neural Networks (GNN) terkenal kerana keupayaannya menjana 100% molekul cekap, tetapi keupayaan ekspresifnya adalah terhad.
Spesifikasi Input Linear Molekul Ringkas (SENYUM), sebagai perwakilan linear, cenderung untuk menghasilkan rentetan yang tidak sah secara kimia. DeepSMILES dan SELFIES adalah penambahbaikan sebagai alternatif, tetapi masih mempunyai masalah.
Selain itu, penyelidikan menunjukkan bahawa model bahasa (LM) mungkin mengatasi kebanyakan GNN dalam mempelajari molekul yang besar dan kompleks. Baru-baru ini, LM berdasarkan Transformers telah menunjukkan keupayaan mereka untuk menjana teks yang hampir menyerupai tulisan manusia.
Diilhamkan oleh idea-idea ini, para penyelidik memilih SMILES sebagai pilihan permulaan untuk penerangan serpihan, dan digabungkan dengan teknologi pemprosesan bahasa semula jadi yang canggih untuk mengendalikan tugas pemodelan molekul berasaskan serpihan, yang boleh menggabungkan model graf untuk memberi lebih perhatian kepada topologi molekul dan LM Kelebihan keupayaan pembelajaran yang kuat.
Menghasilkan 100% molekul baru yang berkesan, lebih baik daripada SOTA
Oleh itu, pasukan Universiti Hunan mencadangkan rangka kerja perihalan molekul baharu berdasarkan molekul pecahan, t-SMILES (SENYUMAN berasaskan pokok). Rangka kerja ini mengandungi tiga algoritma pengekodan t-SMILES: TSSA (t-SMILES dengan atom yang dikongsi), TSDY (t-SMILES dengan atom maya tetapi bukan ID) dan TSID (t-SMILES dengan ID dan atom maya).
Rangka kerja t-SMILES yang baru dicadangkan
- menjana molekul molekul acyclic.MT (Acyclic molekular trees).
- Tukar AMT kepada pokok binari penuh (FBT).
- Lakukan lintasan pertama luas di FBT untuk mendapatkan rentetan t-SMILES.
Berbanding dengan SMILES
t-SMILES hanya memperkenalkan dua simbol baharu "&" dan "^" untuk mengekod topologi molekul berskala dan hierarki. Algoritma
t-SMILES
menyediakan rangka kerja berskala dan boleh disesuaikan yang secara teorinya boleh menyokong pelbagai skema substruktur.
Model berasaskan t-SMILES
dapat mempelajari maklumat struktur topologi peringkat tinggi sambil memproses maklumat substruktur terperinci.
Sistem berbilang kod
t-SMILES algoritma boleh membina sistem berbilang kod untuk penerangan molekul, di mana:
- Classic SMILES boleh disepadukan sebagai kes khas t-SMILES (TS_Vanilla).
- Berbilang penerangan boleh bekerjasama untuk meningkatkan prestasi keseluruhan.
Ilustrasi: pengedaran token untuk kod TSSA, SMILES dan SELFIES. (Sumber: kertas)
Pertama, para penyelidik secara sistematik menilai t-SENYUM dengan menyelidiki ciri uniknya. Selepas itu, eksperimen telah dijalankan menggunakan TSSA dan TSDY pada dua set data sumber rendah berlabel, JNK332 dan AID170633.
Penyelidikan memfokuskan pada batasan t-SMILES dan alternatifnya, yang dicapai dengan memanfaatkan standard, penambahan data dan model yang telah ditala halus yang telah dilatih. Dua puluh tugas terarah matlamat pada ChEMBL dinilai secara selari menggunakan TSDY, TSSA, dan TSID. Eksperimen menyeluruh juga dilakukan pada ChEMBL, Zink, dan QM9 untuk membandingkan t-SMILES dan alternatifnya dengan menggunakan persediaan yang serupa. Tambahan pula, pelbagai model garis dasar berasaskan serpihan dan model SOTA GNN dibandingkan.
Akhir sekali, kajian ablasi dilakukan untuk mengesahkan keberkesanan model generatif berdasarkan SMILES dengan pembinaan semula. Untuk menilai kebolehsuaian dan fleksibiliti algoritma t-SMILES, empat algoritma pemecahan yang diterbitkan sebelum ini digunakan untuk menguraikan molekul, termasuk JTVAE, BRICS, MMPA dan Scaffold. Tiga metrik telah digunakan dalam eksperimen yang berbeza: penanda aras pembelajaran teragih, penanda aras terarah matlamat dan metrik jarak Wasserstein untuk sifat fizikokimia.
Eksperimen perbandingan terperinci menunjukkan bahawa molekul baharu yang dihasilkan oleh model t-SMILES adalah 100% sah secara teori dan lebih baik daripada model berdasarkan SOTA SMILES. Berbanding dengan SMILES, DSMILES dan SELFIES, penyelesaian keseluruhan t-SMILES boleh mengelakkan masalah overfitting dan meningkatkan prestasi seimbang dengan ketara pada set data sumber rendah, sama ada menggunakan penambahan data atau model pra-latihan dan kemudian diperhalusi.
Selain itu, model t-SMILES mampu menangkap dengan mahir sifat fizikokimia molekul, memastikan molekul yang dihasilkan mengekalkan persamaan dengan pengedaran molekul latihan. Ini meningkatkan prestasi dengan ketara berbanding model asas berasaskan serpihan dan berasaskan graf sedia ada. Khususnya, model t-SMILES dengan algoritma pembinaan semula berorientasikan matlamat menunjukkan kelebihan yang jelas berbanding SMILES, DSMILES, SELFIES dan SOTA CReM dalam tugasan berorientasikan matlamat.
Keterbatasan dan Kawasan untuk Penambahbaikan
- LLM boleh memahami tatabahasa Inggeris yang diformat dengan baik. Oleh itu, sama ada struktur pokok t-SMILES boleh dipelajari dan bagaimana LM boleh melangkaui korelasi statistik permukaan untuk mempelajari pengetahuan kimia molekul masih perlu diterokai secara mendalam.
- Penyelidikan ini memfokuskan pada pengekodan molekul berpecah-belah ke dalam urutan, jadi hanya algoritma pemecahan yang diterbitkan digunakan sebagai contoh untuk mencipta "perkataan kimia". Penyelidikan masa depan boleh memanfaatkan t-SMILES untuk meneroka algoritma pemecahan lain untuk mentafsir ayat dan makna kimia dengan lebih mendalam, yang sebenarnya lebih mencabar daripada NLP.
- Walaupun t-SMILES direka untuk meningkatkan prestasi huraian molekul dan memintas batasan SMILES, kajian itu tidak bereksperimen dengan molekul yang lebih kompleks. Ini akan menjadi subjek kajian masa depan.
- Akhir sekali, ini adalah permulaan yang menjanjikan untuk mengekodkan molekul yang berpecah kepada rentetan jenis SMILES. Penyelidikan lanjut boleh meneroka algoritma lanjutan untuk pembinaan semula dan pengoptimuman molekul, model generatif yang dipertingkatkan dan teknik evolusi. Selain itu, penyelidikan boleh menumpukan pada sifat, retrosintesis dan tugas ramalan tindak balas.
Nota: Sampulnya datang dari Internet
Atas ialah kandungan terperinci Molekul adalah 100% berkesan, ligan direka dari awal, dan Universiti Hunan mencadangkan rangka kerja pencirian molekul berasaskan serpihan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Tetapi mungkin dia tidak dapat mengalahkan lelaki tua di taman itu? Sukan Olimpik Paris sedang rancak berlangsung, dan pingpong telah menarik perhatian ramai. Pada masa yang sama, robot juga telah membuat penemuan baru dalam bermain pingpong. Sebentar tadi, DeepMind mencadangkan ejen robot pembelajaran pertama yang boleh mencapai tahap pemain amatur manusia dalam pingpong yang kompetitif. Alamat kertas: https://arxiv.org/pdf/2408.03906 Sejauh manakah robot DeepMind bermain pingpong? Mungkin setanding dengan pemain amatur manusia: kedua-dua pukulan depan dan pukulan kilas: pihak lawan menggunakan pelbagai gaya permainan, dan robot juga boleh bertahan: servis menerima dengan putaran yang berbeza: Walau bagaimanapun, keamatan permainan nampaknya tidak begitu sengit seperti lelaki tua di taman itu. Untuk robot, pingpong

Pada 21 Ogos, Persidangan Robot Dunia 2024 telah diadakan dengan megah di Beijing. Jenama robot rumah SenseTime "Yuanluobot SenseRobot" telah memperkenalkan seluruh keluarga produknya, dan baru-baru ini mengeluarkan robot permainan catur AI Yuanluobot - Edisi Profesional Catur (selepas ini dirujuk sebagai "Yuanluobot SenseRobot"), menjadi robot catur A pertama di dunia untuk rumah. Sebagai produk robot permainan catur ketiga Yuanluobo, robot Guoxiang baharu telah melalui sejumlah besar peningkatan teknikal khas dan inovasi dalam AI dan jentera kejuruteraan Buat pertama kalinya, ia telah menyedari keupayaan untuk mengambil buah catur tiga dimensi melalui cakar mekanikal pada robot rumah, dan melaksanakan Fungsi mesin manusia seperti bermain catur, semua orang bermain catur, semakan notasi, dsb.

Permulaan sekolah akan bermula, dan bukan hanya pelajar yang akan memulakan semester baharu yang harus menjaga diri mereka sendiri, tetapi juga model AI yang besar. Beberapa ketika dahulu, Reddit dipenuhi oleh netizen yang mengadu Claude semakin malas. "Tahapnya telah banyak menurun, ia sering berhenti seketika, malah output menjadi sangat singkat. Pada minggu pertama keluaran, ia boleh menterjemah dokumen penuh 4 halaman sekaligus, tetapi kini ia tidak dapat mengeluarkan separuh halaman pun. !" https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ dalam siaran bertajuk "Totally disappointed with Claude", penuh dengan

Pada Persidangan Robot Dunia yang diadakan di Beijing, paparan robot humanoid telah menjadi tumpuan mutlak di gerai Stardust Intelligent, pembantu robot AI S1 mempersembahkan tiga persembahan utama dulcimer, seni mempertahankan diri dan kaligrafi dalam. satu kawasan pameran, berkebolehan kedua-dua sastera dan seni mempertahankan diri, menarik sejumlah besar khalayak profesional dan media. Permainan elegan pada rentetan elastik membolehkan S1 menunjukkan operasi halus dan kawalan mutlak dengan kelajuan, kekuatan dan ketepatan. CCTV News menjalankan laporan khas mengenai pembelajaran tiruan dan kawalan pintar di sebalik "Kaligrafi Pengasas Syarikat Lai Jie menjelaskan bahawa di sebalik pergerakan sutera, bahagian perkakasan mengejar kawalan daya terbaik dan penunjuk badan yang paling menyerupai manusia (kelajuan, beban). dll.), tetapi di sisi AI, data pergerakan sebenar orang dikumpulkan, membolehkan robot menjadi lebih kuat apabila ia menghadapi situasi yang kuat dan belajar untuk berkembang dengan cepat. Dan tangkas

Pada persidangan ACL ini, para penyumbang telah mendapat banyak keuntungan. ACL2024 selama enam hari diadakan di Bangkok, Thailand. ACL ialah persidangan antarabangsa teratas dalam bidang linguistik pengiraan dan pemprosesan bahasa semula jadi Ia dianjurkan oleh Persatuan Antarabangsa untuk Linguistik Pengiraan dan diadakan setiap tahun. ACL sentiasa menduduki tempat pertama dalam pengaruh akademik dalam bidang NLP, dan ia juga merupakan persidangan yang disyorkan CCF-A. Persidangan ACL tahun ini adalah yang ke-62 dan telah menerima lebih daripada 400 karya termaju dalam bidang NLP. Petang semalam, persidangan itu mengumumkan kertas kerja terbaik dan anugerah lain. Kali ini, terdapat 7 Anugerah Kertas Terbaik (dua tidak diterbitkan), 1 Anugerah Kertas Tema Terbaik, dan 35 Anugerah Kertas Cemerlang. Persidangan itu turut menganugerahkan 3 Anugerah Kertas Sumber (ResourceAward) dan Anugerah Impak Sosial (

Penyepaduan mendalam penglihatan dan pembelajaran robot. Apabila dua tangan robot bekerja bersama-sama dengan lancar untuk melipat pakaian, menuang teh dan mengemas kasut, ditambah pula dengan 1X robot humanoid NEO yang telah menjadi tajuk berita baru-baru ini, anda mungkin mempunyai perasaan: kita seolah-olah memasuki zaman robot. Malah, pergerakan sutera ini adalah hasil teknologi robotik canggih + reka bentuk bingkai yang indah + model besar berbilang modal. Kami tahu bahawa robot yang berguna sering memerlukan interaksi yang kompleks dan indah dengan alam sekitar, dan persekitaran boleh diwakili sebagai kekangan dalam domain spatial dan temporal. Sebagai contoh, jika anda ingin robot menuang teh, robot terlebih dahulu perlu menggenggam pemegang teko dan memastikannya tegak tanpa menumpahkan teh, kemudian gerakkannya dengan lancar sehingga mulut periuk sejajar dengan mulut cawan. , dan kemudian condongkan teko pada sudut tertentu. ini

Pengenalan Persidangan Dengan perkembangan pesat sains dan teknologi, kecerdasan buatan telah menjadi kuasa penting dalam menggalakkan kemajuan sosial. Dalam era ini, kami bertuah untuk menyaksikan dan mengambil bahagian dalam inovasi dan aplikasi Kecerdasan Buatan Teragih (DAI). Kecerdasan buatan yang diedarkan adalah cabang penting dalam bidang kecerdasan buatan, yang telah menarik lebih banyak perhatian dalam beberapa tahun kebelakangan ini. Agen berdasarkan model bahasa besar (LLM) tiba-tiba muncul Dengan menggabungkan pemahaman bahasa yang kuat dan keupayaan penjanaan model besar, mereka telah menunjukkan potensi besar dalam interaksi bahasa semula jadi, penaakulan pengetahuan, perancangan tugas, dsb. AIAgent mengambil alih model bahasa besar dan telah menjadi topik hangat dalam kalangan AI semasa. Au

Petang ini, Hongmeng Zhixing secara rasmi mengalu-alukan jenama baharu dan kereta baharu. Pada 6 Ogos, Huawei mengadakan persidangan pelancaran produk baharu Hongmeng Smart Xingxing S9 dan senario penuh Huawei, membawakan sedan perdana pintar panoramik Xiangjie S9, M7Pro dan Huawei novaFlip baharu, MatePad Pro 12.2 inci, MatePad Air baharu, Huawei Bisheng With banyak produk pintar semua senario baharu termasuk pencetak laser siri X1, FreeBuds6i, WATCHFIT3 dan skrin pintar S5Pro, daripada perjalanan pintar, pejabat pintar kepada pakaian pintar, Huawei terus membina ekosistem pintar senario penuh untuk membawa pengguna pengalaman pintar Internet Segala-galanya. Hongmeng Zhixing: Pemerkasaan mendalam untuk menggalakkan peningkatan industri kereta pintar Huawei berganding bahu dengan rakan industri automotif China untuk menyediakan
