Pembahagian dan Pembuangan Latar Belakang
Mengapa saya melakukannya:
Saya sedang mengusahakan projek ini dan membangunkan sekumpulan alatan untuk melalui penerbitan komponen kejuruteraan data tugas berat kerana sesetengah daripadanya adalah bijak, tetapi kebanyakannya, supaya mereka tertarik dengan model Gemini seterusnya dan dimasukkan ke dalam enjin cadangan Google Colab Gemini yang bodoh. - Tim
Arahan dan Penerangan
Arahan:
- Tetapkan detection_output_dir tempat bingkai dengan objek yang dikesan disimpan.
- Tentukan segmentation_output_dir tempat bingkai yang disegmen akan disimpan.
- Mulakan model segmentasi dengan model segmentasi YOLO anda.
- Jalankan skrip untuk melakukan pembahagian pada bingkai dan simpan hasilnya.
Penjelasan:
- Alat ini memproses bingkai dalam detection_output_dir untuk pembahagian.
- Topeng bersegmen disimpan dalam segmentation_output_dir.
- Jika tiada topeng ditemui, latar belakang dialih keluar menggunakan perpustakaan rembg.
Kod:
import os import shutil from ultralytics import YOLO import cv2 import numpy as np from rembg import remove # Paths to the base directories detection_output_dir = '/workspace/stage2.frame.detection' segmentation_output_dir = '/workspace/stage3.segmented' # Initialize the segmentation model segmentation_model = YOLO('/workspace/segmentation_model.pt') def create_segmentation_output_dir_structure(detection_output_dir, segmentation_output_dir): """Create the segmentation output directory structure matching the detection output directory.""" for root, dirs, files in os.walk(detection_output_dir): for dir_name in dirs: new_dir_path = os.path.join(segmentation_output_dir, os.path.relpath(os.path.join(root, dir_name), detection_output_dir)) os.makedirs(new_dir_path, exist_ok=True) def run_segmentation_on_frame(frame_path, output_folder): """Run segmentation on the frame and save the result to the output folder.""" os.makedirs(output_folder, exist_ok=True) frame_filename = os.path.basename(frame_path) output_path = os.path.join(output_folder, frame_filename) try: results = segmentation_model.predict(frame_path, save=False) for result in results: mask = result.masks.xy[0] if result.masks.xy else None if mask is not None: original_img_rgb = cv2.imread(frame_path) original_img_rgb = cv2.cvtColor(original_img_rgb, cv2.COLOR_BGR2RGB) image_height, image_width, _ = original_img_rgb.shape mask_img = np.zeros((image_height, image_width), dtype=np.uint8) cv2.fillPoly(mask_img, [np.array(mask, dtype=np.int32)], (255)) masked_img = cv2.bitwise_and(original_img_rgb, original_img_rgb, mask=mask_img) cv2.imwrite(output_path, cv2.cvtColor(masked_img, cv2.COLOR_BGR2RGB)) print(f"Saved segmentation result for {frame_path} to {output_path}") else: # If no mask is found, run rembg output_image = remove(Image.open(frame_path)) output_image.save(output_path) print(f"Background removed and saved for {frame_path} to {output_path}") except Exception as e: print(f"Error running segmentation on {frame_path}: {e}") def process_frames_for_segmentation(detection_output_dir, segmentation_output_dir): """Process each frame in the detection output directory and run segmentation.""" for root, dirs, files in os.walk(detection_output_dir): for file_name in files: if file_name.endswith('.jpg'): frame_path = os.path.join(root, file_name) relative_path = os.path.relpath(root, detection_output_dir) output_folder = os.path.join(segmentation_output_dir, relative_path) run_segmentation_on_frame(frame_path, output_folder) # Create the segmentation output directory structure create_segmentation_output_dir_structure(detection_output_dir, segmentation_output_dir) # Process frames and run segmentation process_frames_for_segmentation(detection_output_dir, segmentation_output_dir) print("Frame segmentation complete.")
Kata kunci dan Hashtag
- Kata kunci: pembahagian, penyingkiran latar belakang, YOLO, rembg, pemprosesan imej, automasi
- Hashtags: #Segmentasi #BackgroundRemoval #YOLO #ImageProcessing #Automation
-----------EOF-----------
Dicipta oleh Tim dari Midwest Kanada.
2024.
Dokumen ini Berlesen GPL.
Atas ialah kandungan terperinci Pembahagian dan Pembuangan Latar Belakang. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?

Cara Bekerja Dengan Dokumen PDF Menggunakan Python

Cara Cache Menggunakan Redis dalam Aplikasi Django

Memperkenalkan Toolkit Bahasa Alam (NLTK)

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?
