Rumah > Java > javaTutorial > Kelas AVLTree

Kelas AVLTree

WBOY
Lepaskan: 2024-07-25 07:04:43
asal
430 orang telah melayarinya

The AVLTree Class

Kelas AVLTree memanjangkan kelas BST untuk mengatasi kaedah sisipkan dan padam untuk mengimbangi semula pokok jika perlu. Kod di bawah memberikan kod sumber lengkap untuk kelas AVLTree.

package demo;

public class AVLTree<E extends Comparable<E>> extends BST<E> {
    /** Create an empty AVL tree */
    public AVLTree() {}

    /** Create an AVL tree from an array of objects */
    public AVLTree(E[] objects) {
        super(objects);
    }

    @Override /** Override createNewNode to create an AVLTreeNode */
    protected AVLTreeNode<E> createNewNode(E e) {
        return new AVLTreeNode<E>(e);
    }

    @Override /** Insert an element and rebalance if necessary */
    public boolean insert(E e) {
        boolean successful = super.insert(e);
        if (!successful)
            return false; // e is already in the tree
        else {
            balancePath(e); // Balance from e to the root if necessary
        }

        return true; // e is inserted
    }

    /** Update the height of a specified node */
    private void updateHeight(AVLTreeNode<E> node) {
        if (node.left == null && node.right == null) // node is a leaf
            node.height = 0;
        else if (node.left == null) // node has no left subtree
            node.height = 1 + ((AVLTreeNode<E>)(node.right)).height;
        else if (node.right == null) // node has no right subtree
            node.height = 1 + ((AVLTreeNode<E>)(node.left)).height;
        else
            node.height = 1 + Math.max(((AVLTreeNode<E>)(node.right)).height, ((AVLTreeNode<E>)(node.left)).height);
    }

    /** Balance the nodes in the path from the specified
    * node to the root if necessary
    */
    private void balancePath(E e) {
        java.util.ArrayList<TreeNode<E>> path = path(e);
        for (int i = path.size() - 1; i >= 0; i--) {
            AVLTreeNode<E> A = (AVLTreeNode<E>)(path.get(i));
            updateHeight(A);
            AVLTreeNode<E> parentOfA = (A == root) ? null : (AVLTreeNode<E>)(path.get(i - 1));

            switch (balanceFactor(A)) {
            case -2:
                if (balanceFactor((AVLTreeNode<E>)A.left) <= 0) {
                    balanceLL(A, parentOfA); // Perform LL rotation
                }
                else {
                    balanceLR(A, parentOfA); // Perform LR rotation
                }
                break;
                case +2:
                    if (balanceFactor((AVLTreeNode<E>)A.right) >= 0) {
                        balanceRR(A, parentOfA); // Perform RR rotation
                    }
                else {
                    balanceRL(A, parentOfA); // Perform RL rotation
                }
            }
        }
    }

    /** Return the balance factor of the node */
    private int balanceFactor(AVLTreeNode<E> node) {
        if (node.right == null) // node has no right subtree
            return -node.height;
        else if (node.left == null) // node has no left subtree
            return +node.height;
        else
            return ((AVLTreeNode<E>)node.right).height - ((AVLTreeNode<E>)node.left).height;
    }

    /** Balance LL (see Figure 26.2) */
    private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) {
        TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy
        if (A == root) {
            root = B;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = B;
            }
            else {
                parentOfA.right = B;
            }
        }

        A.left = B.right; // Make T2 the left subtree of A
        B.right = A; // Make A the left child of B
        updateHeight((AVLTreeNode<E>)A);
        updateHeight((AVLTreeNode<E>)B);
    }

    /** Balance LR (see Figure 26.4) */
    private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) {
        TreeNode<E> B = A.left; // A is left-heavy
        TreeNode<E> C = B.right; // B is right-heavy

        if (A == root) {
            root = C;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = C;
            }
            else {
                parentOfA.right = C;
            }
        }

        A.left = C.right; // Make T3 the left subtree of A
        B.right = C.left; // Make T2 the right subtree of B
        C.left = B;
        C.right = A;

        // Adjust heights
        updateHeight((AVLTreeNode<E>)A);
        updateHeight((AVLTreeNode<E>)B);
        updateHeight((AVLTreeNode<E>)C);
    }

    /** Balance RR (see Figure 26.3) */
    private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) {
        TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy

        if (A == root) {
            root = B;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = B;
            }
            else {
                parentOfA.right = B;
            }
        }

        A.right = B.left; // Make T2 the right subtree of A
        B.left = A;
        updateHeight((AVLTreeNode<E>)A);
        updateHeight((AVLTreeNode<E>)B);
    }

    /** Balance RL (see Figure 26.5) */
    private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) {
        TreeNode<E> B = A.right; // A is right-heavy
        TreeNode<E> C = B.left; // B is left-heavy

        if (A == root) {
            root = C;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = C;
            }
            else {
                parentOfA.right = C;
            }
        }

        A.right = C.left; // Make T2 the right subtree of A
        B.left = C.right; // Make T3 the left subtree of B
        C.left = A;
        C.right = B;

        // Adjust heights
        updateHeight((AVLTreeNode<E>)A);
        updateHeight((AVLTreeNode<E>)B);
        updateHeight((AVLTreeNode<E>)C);
    }

    @Override /** Delete an element from the AVL tree.
    * Return true if the element is deleted successfully
    * Return false if the element is not in the tree */
    public boolean delete(E element) {
        if (root == null)
            return false; // Element is not in the tree

        // Locate the node to be deleted and also locate its parent node
        TreeNode<E> parent = null;
        TreeNode<E> current = root;
        while (current != null) {
            if (element.compareTo(current.element) < 0) {
                parent = current;
                current = current.left;
            }
            else if (element.compareTo(current.element) > 0) {
                parent = current;
                current = current.right;
            }
            else
                break; // Element is in the tree pointed by current
        }

        if (current == null)
            return false; // Element is not in the tree

        // Case 1: current has no left children (See Figure 25.10)
        if (current.left == null) {
            // Connect the parent with the right child of the current node
            if (parent == null) {
                root = current.right;
            }
            else {
                if (element.compareTo(parent.element) < 0)
                    parent.left = current.right;
                else
                    parent.right = current.right;
                // Balance the tree if necessary
                balancePath(parent.element);
            }
        }
        else {
            // Case 2: The current node has a left child
            // Locate the rightmost node in the left subtree of
            // the current node and also its parent
            TreeNode<E> parentOfRightMost = current;
            TreeNode<E> rightMost = current.left;

            while (rightMost.right != null) {
                parentOfRightMost = rightMost;
                rightMost = rightMost.right; // Keep going to the right
            }

            // Replace the element in current by the element in rightMost
            current.element = rightMost.element;

            // Eliminate rightmost node
            if (parentOfRightMost.right == rightMost)
                parentOfRightMost.right = rightMost.left;
            else
                // Special case: parentOfRightMost is current
                parentOfRightMost.left = rightMost.left;
            // Balance the tree if necessary
            balancePath(parentOfRightMost.element);
        }

        size--;
        return true; // Element inserted
    }

    /** AVLTreeNode is TreeNode plus height */
    protected static class AVLTreeNode<E extends Comparable<E>> extends BST.TreeNode<E> {
        protected int height = 0; // New data field

        public AVLTreeNode(E e) {
            super(e);
        }
    }
}

Salin selepas log masuk

Kelas AVLTree dilanjutkan BST. Seperti kelas BST, kelas AVLTree mempunyai pembina no-arg yang membina AVLTree kosong (baris 5) dan pembina yang mencipta AVLTree daripada tatasusunan elemen (baris 8–10).

Kaedah

createNewNode() yang ditakrifkan dalam kelas BST mencipta TreeNode. Kaedah ini ditindih untuk mengembalikan AVLTreeNode (baris 13–15).

Kaedah

sisip dalam AVLTree ditindih dalam baris 18–27. Kaedah ini mula-mula menggunakan kaedah masukkan dalam BST, kemudian memanggil balancePath(e) (baris 23) untuk memastikan pokok itu seimbang.

Kaedah

balancePath mula-mula mendapatkan nod pada laluan daripada nod yang mengandungi elemen e kepada punca (baris 45). Untuk setiap nod dalam laluan, kemas kini ketinggiannya (baris 48), semak faktor keseimbangannya (baris 51) dan lakukan putaran yang sesuai jika perlu (garisan 51–67).

Empat kaedah untuk melakukan putaran ditakrifkan dalam baris 82–178. Setiap kaedah digunakan dengan dua

TreeNode argumen—A dan parentOfA—untuk melakukan putaran yang sesuai pada nod A. Cara setiap putaran dilakukan digambarkan dalam Rajah dalam siaran. Selepas putaran, ketinggian nod A, B dan C dikemas kini (baris 98, 125, 148, 175).

Kaedah

padam dalam AVLTree ditindih dalam baris 183–248. Kaedahnya adalah sama seperti yang dilaksanakan dalam kelas BST, kecuali anda perlu mengimbangi semula nod selepas pemadaman dalam dua kes (baris 218, 243).

Atas ialah kandungan terperinci Kelas AVLTree. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:dev.to
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan