Rumah Peranti teknologi AI Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains

Aug 08, 2024 pm 09:22 PM
teori

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains

Editor |. KX

Sehingga hari ini, perincian struktur dan ketepatan yang ditentukan oleh kristalografi, daripada logam ringkas kepada protein membran yang besar, tidak dapat ditandingi oleh mana-mana kaedah lain. Walau bagaimanapun, cabaran terbesar, yang dipanggil masalah fasa, kekal mendapatkan maklumat fasa daripada amplitud yang ditentukan secara eksperimen.

Para penyelidik di Universiti Copenhagen, Denmark, telah membangunkan kaedah pembelajaran mendalam yang dipanggil PhAI untuk menyelesaikan masalah fasa kristal Rangkaian saraf pembelajaran mendalam yang dilatih menggunakan berjuta-juta struktur kristal tiruan dan data pembelauan sintetik yang sepadan boleh menjana peta ketumpatan elektron yang tepat. .

Penyelidikan menunjukkan bahawa kaedah penyelesaian struktur ab initio berasaskan pembelajaran mendalam ini boleh menyelesaikan masalah fasa pada resolusi hanya 2 Angstrom, yang bersamaan dengan hanya 10% hingga 20% daripada data yang tersedia pada resolusi atom, manakala Ab initio tradisional kaedah biasanya memerlukan resolusi atom.

Penyelidikan berkaitan bertajuk "PhAI: Pendekatan pembelajaran mendalam untuk menyelesaikan masalah fasa kristalografi" dan diterbitkan dalam "Sains" pada 1 Ogos.

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains

Pautan kertas: https://www.science.org/doi/10.1126/science.adn2777

Krystallografi ialah salah satu teknik analisis teras dalam sains semula jadi. Penghabluran sinar-X memberikan pandangan unik ke dalam struktur tiga dimensi kristal.

Untuk membina semula peta ketumpatan elektron, faktor struktur kompleks yang cukup $F$ bagi pantulan difraksi mesti diketahui. Dalam eksperimen tradisional, hanya amplitud $|F|$ diperolehi, manakala fasa $phi$ hilang. Ini adalah masalah fasa kristalografi.

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains

Ilustrasi: Carta alir penentuan struktur kristal standard. (Sumber: Kertas)

Satu kejayaan besar berlaku pada tahun 1950-an dan 1960-an, apabila Karle dan Hauptmann** membangunkan kaedah langsung yang dipanggil untuk menyelesaikan masalah fasa. Tetapi kaedah langsung memerlukan data pembelauan resolusi atom. Walau bagaimanapun, keperluan resolusi atom adalah pemerhatian empirikal.

Dalam beberapa tahun kebelakangan ini, kaedah langsung tradisional telah ditambah dengan kaedah dwi ruang. Kaedah ab initio yang tersedia pada masa ini nampaknya telah mencapai hadnya. Penyelesaian umum kepada masalah fasa masih tidak diketahui.

Secara matematik, sebarang gabungan amplitud dan fasa faktor struktur boleh tertakluk kepada transformasi Fourier songsang. Walau bagaimanapun, keperluan fizikal dan kimia (seperti mempunyai taburan ketumpatan elektron seperti atom) mengenakan peraturan ke atas kemungkinan gabungan fasa yang konsisten dengan set amplitud. Kemajuan dalam pembelajaran mendalam membolehkan seseorang meneroka hubungan ini, mungkin dengan lebih mendalam daripada kaedah ab initio semasa.

Di sini, penyelidik dari Universiti Copenhagen mengambil pendekatan dipacu data, menggunakan berjuta-juta struktur kristal buatan dan data pembelauannya yang sepadan, bertujuan untuk menyelesaikan masalah fasa dalam kristalografi.

Kajian menunjukkan kaedah penyelesaian struktur ab initio berasaskan pembelajaran mendalam ini boleh dilakukan pada resolusi hanya jarak satah kekisi minimum (dmin) = 2.0 Å menggunakan hanya data yang diperlukan oleh kaedah langsung 10% hingga 20% .

Reka bentuk dan Latihan Rangkaian Neural

Rangkaian saraf tiruan yang dibina dipanggil PhAI, yang menerima amplitud faktor struktur |F| dan mengeluarkan nilai fasa yang sepadan ϕ Seni bina PhAI ditunjukkan dalam rajah di bawah.

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam SainsIlustrasi: Kaedah rangkaian neural PhAI menyelesaikan masalah fasa. (Sumber: Kertas) Bilangan faktor struktur dalam struktur kristal bergantung pada saiz sel unit. Bergantung pada sumber pengkomputeran, had diletakkan pada saiz data input. Amplitud faktor struktur input dipilih berdasarkan indeks Miller (h, k, l) yang mematuhi

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains1.

Iaitu, struktur terhad kepada dimensi sel unit kira-kira 10 Å pada resolusi atom. Tambahan pula, kumpulan ruang centrosymmetric yang paling biasa P21/c telah dipilih. Simetri pusat mengehadkan nilai fasa yang mungkin kepada sifar atau π rad.
  1. Forschung zum Training neuronaler Netze mithilfe künstlicher Kristallstrukturen, die hauptsächlich organische Moleküle enthalten. Es entstanden etwa 49.000.000 Strukturen, davon waren 94,29 % organische Kristallstrukturen, 5,66 % metallorganische Kristallstrukturen und 0,05 % anorganische Kristallstrukturen.
  2. Die Eingabe in das neuronale Netzwerk besteht aus Amplitude und Phase, die von einem Faltungseingabeblock verarbeitet, addiert und in eine Reihe von Faltungsblöcken (Conv3D) eingespeist werden, gefolgt von einer Reihe von Multilayer-Perceptron-Blöcken (MLP). Die vom linearen Klassifikator (Phasenklassifikator) vorhergesagte Phase durchläuft das Netzwerk Nc-mal. Trainingsdaten wurden durch Einfügen von Metallatomen und organischen Molekülen aus der GDB-13-Datenbank in Elementarzellen generiert. Die resultierenden Strukturen werden in Trainingsdaten organisiert, aus denen die wahren Phasen- und Strukturfaktoramplituden bei abgetasteten Temperaturfaktoren, Auflösung und Integrität berechnet werden können.
    Lösen Sie echte Strukturprobleme
  3. Trainierte neuronale Netze laufen auf Standardcomputern mit moderatem Rechenaufwand. Als Eingabe akzeptiert es eine Liste von HKL-Indizes und entsprechenden Strukturfaktoramplituden. Es sind keine weiteren Eingabeinformationen erforderlich, nicht einmal die Elementarzellenparameter der Struktur. Dies unterscheidet sich grundlegend von allen anderen modernen Ab-initio-Methoden. Das Netzwerk kann Phasenwerte im laufenden Betrieb vorhersagen und ausgeben.
  4. Die Forscher testeten die Leistung des neuronalen Netzwerks anhand berechneter Beugungsdaten realer Kristallstrukturen. Insgesamt wurden 2387 Testfälle erhalten. Für alle gesammelten Strukturen wurden mehrere Datenauflösungswerte im Bereich von 1,0 bis 2,0 Å berücksichtigt. Zum Vergleich wurde auch eine Ladungsumkehrmethode verwendet, um Phaseninformationen abzurufen.

    Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains

    Abbildung: Histogramm des Korrelationskoeffizienten r zwischen der Phase und der wahren Elektronendichtekarte.
    (Quelle: Paper)

Das trainierte neuronale Netzwerk leistet gut; Es kann alle getesteten Strukturen (N = 2387) lösen, wenn die entsprechenden Beugungsdaten eine gute Auflösung haben, und ist besser in der Lage, Strukturen aus Daten mit niedriger Auflösung zu lösen Hervorragende Leistung. Obwohl ein neuronales Netzwerk selten auf anorganische Strukturen trainiert wird, kann es solche Strukturen perfekt lösen.

Die Charge-Flip-Methode funktioniert bei der Verarbeitung hochauflösender Daten gut, ihre Fähigkeit, einigermaßen korrekte Lösungen zu erzeugen, nimmt jedoch mit abnehmender Datenauflösung allmählich ab. Sie löst jedoch immer noch etwa 32 Pixel bei einer Auflösung von 1,6 Å % Struktur. Die Anzahl der durch Ladungsumkehr identifizierten Strukturen kann durch weitere Experimente und die Änderung von Eingabeparametern wie Umdrehungsschwellenwerten verbessert werden.

Beim PhAI-Ansatz wird diese Metaoptimierung während des Trainings durchgeführt und muss nicht vom Benutzer durchgeführt werden. Diese Ergebnisse legen nahe, dass die in der Kristallographie verbreitete Vorstellung, dass Daten zur atomaren Auflösung erforderlich sind, um Phasen von Anfang an zu berechnen, möglicherweise widerlegt wird. PhAI erfordert nur Daten mit einer atomaren Auflösung von 10 bis 20 %.

Dieses Ergebnis zeigt deutlich, dass eine atomare Auflösung für Ab-initio-Methoden nicht erforderlich ist und eröffnet neue Wege für die Deep-Learning-basierte Strukturbestimmung.

Die Herausforderung dieses Deep-Learning-Ansatzes besteht darin, das neuronale Netzwerk zu skalieren, d. h. Beugungsdaten für größere Elementarzellen erfordern eine große Menge an Eingabe- und Ausgabedaten sowie Rechenaufwand während des Trainings. Zukünftig sind weitere Untersuchungen erforderlich, um diese Methode auf den allgemeinen Fall auszuweiten.

Atas ialah kandungan terperinci Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Menerobos sempadan pengesanan kecacatan tradisional, 'Spektrum Kecacatan' mencapai ketepatan ultra tinggi dan pengesanan kecacatan industri semantik yang kaya buat kali pertama. Menerobos sempadan pengesanan kecacatan tradisional, 'Spektrum Kecacatan' mencapai ketepatan ultra tinggi dan pengesanan kecacatan industri semantik yang kaya buat kali pertama. Jul 26, 2024 pm 05:38 PM

Dalam pembuatan moden, pengesanan kecacatan yang tepat bukan sahaja kunci untuk memastikan kualiti produk, tetapi juga teras untuk meningkatkan kecekapan pengeluaran. Walau bagaimanapun, set data pengesanan kecacatan sedia ada selalunya tidak mempunyai ketepatan dan kekayaan semantik yang diperlukan untuk aplikasi praktikal, menyebabkan model tidak dapat mengenal pasti kategori atau lokasi kecacatan tertentu. Untuk menyelesaikan masalah ini, pasukan penyelidik terkemuka yang terdiri daripada Universiti Sains dan Teknologi Hong Kong Guangzhou dan Teknologi Simou telah membangunkan set data "DefectSpectrum" secara inovatif, yang menyediakan anotasi berskala besar yang kaya dengan semantik bagi kecacatan industri. Seperti yang ditunjukkan dalam Jadual 1, berbanding set data industri lain, set data "DefectSpectrum" menyediakan anotasi kecacatan yang paling banyak (5438 sampel kecacatan) dan klasifikasi kecacatan yang paling terperinci (125 kategori kecacatan

Model dialog NVIDIA ChatQA telah berkembang kepada versi 2.0, dengan panjang konteks disebut pada 128K Model dialog NVIDIA ChatQA telah berkembang kepada versi 2.0, dengan panjang konteks disebut pada 128K Jul 26, 2024 am 08:40 AM

Komuniti LLM terbuka ialah era apabila seratus bunga mekar dan bersaing Anda boleh melihat Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 dan banyak lagi. model yang cemerlang. Walau bagaimanapun, berbanding dengan model besar proprietari yang diwakili oleh GPT-4-Turbo, model terbuka masih mempunyai jurang yang ketara dalam banyak bidang. Selain model umum, beberapa model terbuka yang mengkhusus dalam bidang utama telah dibangunkan, seperti DeepSeek-Coder-V2 untuk pengaturcaraan dan matematik, dan InternVL untuk tugasan bahasa visual.

Google AI memenangi pingat perak IMO Mathematical Olympiad, model penaakulan matematik AlphaProof telah dilancarkan dan pembelajaran pengukuhan kembali Google AI memenangi pingat perak IMO Mathematical Olympiad, model penaakulan matematik AlphaProof telah dilancarkan dan pembelajaran pengukuhan kembali Jul 26, 2024 pm 02:40 PM

Bagi AI, Olimpik Matematik tidak lagi menjadi masalah. Pada hari Khamis, kecerdasan buatan Google DeepMind menyelesaikan satu kejayaan: menggunakan AI untuk menyelesaikan soalan sebenar IMO Olimpik Matematik Antarabangsa tahun ini, dan ia hanya selangkah lagi untuk memenangi pingat emas. Pertandingan IMO yang baru berakhir minggu lalu mempunyai enam soalan melibatkan algebra, kombinatorik, geometri dan teori nombor. Sistem AI hibrid yang dicadangkan oleh Google mendapat empat soalan dengan betul dan memperoleh 28 mata, mencapai tahap pingat perak. Awal bulan ini, profesor UCLA, Terence Tao baru sahaja mempromosikan Olimpik Matematik AI (Anugerah Kemajuan AIMO) dengan hadiah berjuta-juta dolar Tanpa diduga, tahap penyelesaian masalah AI telah meningkat ke tahap ini sebelum Julai. Lakukan soalan secara serentak pada IMO Perkara yang paling sukar untuk dilakukan dengan betul ialah IMO, yang mempunyai sejarah terpanjang, skala terbesar dan paling negatif

Pandangan alam semula jadi: Ujian kecerdasan buatan dalam perubatan berada dalam keadaan huru-hara Apa yang perlu dilakukan? Pandangan alam semula jadi: Ujian kecerdasan buatan dalam perubatan berada dalam keadaan huru-hara Apa yang perlu dilakukan? Aug 22, 2024 pm 04:37 PM

Editor |. ScienceAI Berdasarkan data klinikal yang terhad, beratus-ratus algoritma perubatan telah diluluskan. Para saintis sedang membahaskan siapa yang harus menguji alat dan cara terbaik untuk melakukannya. Devin Singh menyaksikan seorang pesakit kanak-kanak di bilik kecemasan mengalami serangan jantung semasa menunggu rawatan untuk masa yang lama, yang mendorongnya untuk meneroka aplikasi AI untuk memendekkan masa menunggu. Menggunakan data triage daripada bilik kecemasan SickKids, Singh dan rakan sekerja membina satu siri model AI untuk menyediakan potensi diagnosis dan mengesyorkan ujian. Satu kajian menunjukkan bahawa model ini boleh mempercepatkan lawatan doktor sebanyak 22.3%, mempercepatkan pemprosesan keputusan hampir 3 jam bagi setiap pesakit yang memerlukan ujian perubatan. Walau bagaimanapun, kejayaan algoritma kecerdasan buatan dalam penyelidikan hanya mengesahkan perkara ini

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains Aug 08, 2024 pm 09:22 PM

Editor |KX Sehingga hari ini, perincian dan ketepatan struktur yang ditentukan oleh kristalografi, daripada logam ringkas kepada protein membran yang besar, tidak dapat ditandingi oleh mana-mana kaedah lain. Walau bagaimanapun, cabaran terbesar, yang dipanggil masalah fasa, kekal mendapatkan maklumat fasa daripada amplitud yang ditentukan secara eksperimen. Penyelidik di Universiti Copenhagen di Denmark telah membangunkan kaedah pembelajaran mendalam yang dipanggil PhAI untuk menyelesaikan masalah fasa kristal Rangkaian saraf pembelajaran mendalam yang dilatih menggunakan berjuta-juta struktur kristal tiruan dan data pembelauan sintetik yang sepadan boleh menghasilkan peta ketumpatan elektron yang tepat. Kajian menunjukkan bahawa kaedah penyelesaian struktur ab initio berasaskan pembelajaran mendalam ini boleh menyelesaikan masalah fasa pada resolusi hanya 2 Angstrom, yang bersamaan dengan hanya 10% hingga 20% daripada data yang tersedia pada resolusi atom, manakala Pengiraan ab initio tradisional

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

PRO |. Mengapa model besar berdasarkan MoE lebih patut diberi perhatian? PRO |. Mengapa model besar berdasarkan MoE lebih patut diberi perhatian? Aug 07, 2024 pm 07:08 PM

Pada tahun 2023, hampir setiap bidang AI berkembang pada kelajuan yang tidak pernah berlaku sebelum ini. Pada masa yang sama, AI sentiasa menolak sempadan teknologi trek utama seperti kecerdasan yang terkandung dan pemanduan autonomi. Di bawah trend berbilang modal, adakah status Transformer sebagai seni bina arus perdana model besar AI akan digoncang? Mengapakah penerokaan model besar berdasarkan seni bina MoE (Campuran Pakar) menjadi trend baharu dalam industri? Bolehkah Model Penglihatan Besar (LVM) menjadi satu kejayaan baharu dalam penglihatan umum? ...Daripada surat berita ahli PRO 2023 laman web ini yang dikeluarkan dalam tempoh enam bulan lalu, kami telah memilih 10 tafsiran khas yang menyediakan analisis mendalam tentang aliran teknologi dan perubahan industri dalam bidang di atas untuk membantu anda mencapai matlamat anda dalam bidang baharu. tahun. Tafsiran ini datang dari Week50 2023

Mengenal pasti molekul terbaik secara automatik dan mengurangkan kos sintesis MIT membangunkan rangka kerja algoritma pembuatan keputusan reka bentuk molekul Mengenal pasti molekul terbaik secara automatik dan mengurangkan kos sintesis MIT membangunkan rangka kerja algoritma pembuatan keputusan reka bentuk molekul Jun 22, 2024 am 06:43 AM

Editor |. Penggunaan Ziluo AI dalam memperkemas penemuan dadah semakin meletup. Skrin berbilion molekul calon untuk mereka yang mungkin mempunyai sifat yang diperlukan untuk membangunkan ubat baharu. Terdapat begitu banyak pembolehubah untuk dipertimbangkan, daripada harga material kepada risiko kesilapan, sehingga menimbang kos mensintesis molekul calon terbaik bukanlah tugas yang mudah, walaupun saintis menggunakan AI. Di sini, penyelidik MIT membangunkan SPARROW, rangka kerja algoritma membuat keputusan kuantitatif, untuk mengenal pasti calon molekul terbaik secara automatik, dengan itu meminimumkan kos sintesis sambil memaksimumkan kemungkinan calon mempunyai sifat yang diingini. Algoritma juga menentukan bahan dan langkah eksperimen yang diperlukan untuk mensintesis molekul ini. SPARROW mengambil kira kos mensintesis sekumpulan molekul sekaligus, memandangkan berbilang molekul calon selalunya tersedia

See all articles