Rumah pembangunan bahagian belakang Tutorial Python Pydantic • Berurusan dengan mengesahkan dan membersihkan data

Pydantic • Berurusan dengan mengesahkan dan membersihkan data

Aug 16, 2024 pm 06:03 PM

Pydantic • Dealing with validating and sanitizing data

Sejak saya memulakan pengaturcaraan, saya kebanyakannya menggunakan paradigma berstruktur dan prosedur, kerana tugas saya memerlukan penyelesaian yang lebih praktikal dan langsung. Apabila bekerja dengan pengekstrakan data, saya terpaksa beralih kepada paradigma baharu untuk mencapai kod yang lebih teratur.

Contoh keperluan ini ialah semasa tugas mengikis apabila saya perlu menangkap data tertentu yang pada mulanya adalah jenis yang saya tahu bagaimana untuk mengendalikan, tetapi kemudian tiba-tiba, ia sama ada tidak wujud atau muncul dalam jenis yang berbeza semasa penangkapan .

Oleh itu, saya terpaksa menambah beberapa blok jika dan cuba dan tangkap untuk menyemak sama ada data itu adalah int atau rentetan ... kemudian mendapati tiada apa-apa yang ditangkap, Tiada , dsb. Dengan kamus, saya akhirnya menyimpan beberapa "data lalai" yang tidak menarik dalam situasi seperti:

data.get(values, 0)
Salin selepas log masuk

Nah, mesej ralat yang mengelirukan pastinya terpaksa berhenti muncul.

Begitulah Python dinamik. Pembolehubah boleh menukar jenisnya pada bila-bila masa yang dikehendaki, sehingga anda memerlukan lebih jelas tentang jenis yang anda gunakan. Kemudian tiba-tiba, sekumpulan maklumat muncul, dan sekarang saya sedang membaca tentang cara saya boleh menangani pengesahan data, dengan IDE membantu saya dengan petunjuk jenis dan perpustakaan pydantic yang menarik.

Kini, dalam tugas seperti manipulasi data dan dengan paradigma baharu, saya boleh mempunyai objek yang jenisnya akan diisytiharkan secara eksplisit, bersama-sama dengan perpustakaan yang membenarkan pengesahan jenis ini. Jika berlaku kesilapan, ia akan menjadi lebih mudah untuk nyahpepijat dengan melihat maklumat ralat yang diterangkan dengan lebih baik.


Pydantic

Jadi, inilah dokumentasi Pydantic. Untuk lebih banyak soalan, adalah baik untuk berunding.

Pada asasnya, seperti yang kita sedia maklum, kita bermula dengan:

pip install pydantic
Salin selepas log masuk

Dan kemudian, secara hipotesis, kami ingin menangkap e-mel daripada sumber yang mengandungi e-mel ini, dan kebanyakannya kelihatan seperti ini: "xxxx@xxxx.com". Tetapi kadangkala, ia mungkin datang seperti ini: "xxxx@" atau "xxxx". Kami tidak mempunyai keraguan tentang format e-mel yang harus ditangkap, jadi kami akan mengesahkan rentetan e-mel ini dengan Pydantic:

from pydantic import BaseModel, EmailStr

class Consumer(BaseModel):
    email: EmailStr
    account_id: int

consumer = Consumer(email="teste@teste", account_id=12345)

print(consumer)
Salin selepas log masuk

Perhatikan bahawa saya menggunakan kebergantungan pilihan, "email-validator", dipasang dengan: pip install pydantic[email]. Apabila anda menjalankan kod, seperti yang kami tahu, ralat akan berada dalam format e-mel yang tidak sah "teste@teste":

Traceback (most recent call last):
  ...
    consumer = Consumer(email="teste@teste", account_id=12345)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  ...: 1 validation error for Consumer
email
  value is not a valid email address: The part after the @-sign is not valid. It should have a period. [type=value_error, input_value='teste@teste', input_type=str]
Salin selepas log masuk

Menggunakan kebergantungan pilihan untuk mengesahkan data adalah menarik, sama seperti membuat pengesahan kami sendiri, dan Pydantic membenarkannya melalui field_validator. Jadi, kita tahu bahawa account_id mestilah positif dan lebih besar daripada sifar. Jika ia berbeza, adalah menarik untuk Pydantic memberi amaran bahawa terdapat pengecualian, ralat nilai. Kod itu kemudiannya ialah:

from pydantic import BaseModel, EmailStr, field_validator

class Consumer(BaseModel):
    email: EmailStr
    account_id: int

    @field_validator("account_id")
    def validate_account_id(cls, value):
        """Custom Field Validation"""
        if value <= 0:
            raise ValueError(f"account_id must be positive: {value}")
        return value

consumer = Consumer(email="teste@teste.com", account_id=0)

print(consumer)
Salin selepas log masuk
$ python capture_emails.py
Traceback (most recent call last):
...
    consumer = Consumer(email="teste@teste.com", account_id=0)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...: 1 validation error for Consumer
account_id
  Value error, account_id must be positive: 0 [type=value_error, input_value=0, input_type=int]
    For further information visit https://errors.pydantic.dev/2.8/v/value_error
Salin selepas log masuk

Sekarang, jalankan kod dengan nilai yang betul:

from pydantic import BaseModel, EmailStr, field_validator

class Consumer(BaseModel):
    email: EmailStr
    account_id: int

    @field_validator("account_id")
    def validate_account_id(cls, value):
        """Custom Field Validation"""
        if value <= 0:
            raise ValueError(f"account_id must be positive: {value}")
        return value

consumer = Consumer(email="teste@teste.com", account_id=12345)

print(consumer)
Salin selepas log masuk
$ python capture_emails.py
email='teste@teste.com' account_id=12345
Salin selepas log masuk

Betul tak?!

Saya juga membaca sesuatu tentang modul "dataclasses" asli, yang sedikit lebih mudah dan mempunyai beberapa persamaan dengan Pydantic. Walau bagaimanapun, Pydantic adalah lebih baik untuk mengendalikan model data yang lebih kompleks yang memerlukan pengesahan. Kelas data disertakan secara asli dalam Python, manakala Pydantic tidak—sekurang-kurangnya, belum lagi.

Atas ialah kandungan terperinci Pydantic • Berurusan dengan mengesahkan dan membersihkan data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks Mar 05, 2025 am 09:58 AM

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks

Cara memuat turun fail di python Cara memuat turun fail di python Mar 01, 2025 am 10:03 AM

Cara memuat turun fail di python

Penapisan gambar di python Penapisan gambar di python Mar 03, 2025 am 09:44 AM

Penapisan gambar di python

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html? Bagaimana saya menggunakan sup yang indah untuk menghuraikan html? Mar 10, 2025 pm 06:54 PM

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?

Cara Bekerja Dengan Dokumen PDF Menggunakan Python Cara Bekerja Dengan Dokumen PDF Menggunakan Python Mar 02, 2025 am 09:54 AM

Cara Bekerja Dengan Dokumen PDF Menggunakan Python

Cara Cache Menggunakan Redis dalam Aplikasi Django Cara Cache Menggunakan Redis dalam Aplikasi Django Mar 02, 2025 am 10:10 AM

Cara Cache Menggunakan Redis dalam Aplikasi Django

Memperkenalkan Toolkit Bahasa Alam (NLTK) Memperkenalkan Toolkit Bahasa Alam (NLTK) Mar 01, 2025 am 10:05 AM

Memperkenalkan Toolkit Bahasa Alam (NLTK)

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch? Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch? Mar 10, 2025 pm 06:52 PM

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?

See all articles