Rumah pembangunan bahagian belakang Tutorial Python Penormalan Peta Warna Matplotlib: Memvisualisasikan Data Tak Linear

Penormalan Peta Warna Matplotlib: Memvisualisasikan Data Tak Linear

Aug 19, 2024 pm 04:40 PM

pengenalan

Matplotlib Colormap Normalization: Visualizing Nonlinear Data

Dalam visualisasi data, peta warna digunakan untuk mewakili data berangka melalui warna. Walau bagaimanapun, kadangkala pengedaran data mungkin tidak linear, yang boleh menyukarkan untuk membezakan butiran data. Dalam kes sedemikian, penormalan peta warna boleh digunakan untuk memetakan peta warna pada data dalam cara tidak linear untuk membantu menggambarkan data dengan lebih tepat. Matplotlib menyediakan beberapa kaedah normalisasi, termasuk SymLogNorm dan AsinhNorm, yang boleh digunakan untuk menormalkan peta warna. Makmal ini akan menunjukkan cara menggunakan SymLogNorm dan AsinhNorm untuk memetakan peta warna pada data tak linear.

Petua VM

Selepas permulaan VM selesai, klik penjuru kiri sebelah atas untuk beralih ke tab Buku Nota untuk mengakses Buku Nota Jupyter untuk latihan.

Kadangkala, anda mungkin perlu menunggu beberapa saat untuk Buku Nota Jupyter selesai memuatkan. Pengesahan operasi tidak boleh diautomasikan kerana pengehadan dalam Buku Nota Jupyter.

Jika anda menghadapi masalah semasa pembelajaran, sila tanya Labby. Berikan maklum balas selepas sesi, dan kami akan segera menyelesaikan masalah untuk anda.

Import Perpustakaan Diperlukan

Dalam langkah ini, kami akan mengimport pustaka yang diperlukan, termasuk warna Matplotlib, NumPy dan Matplotlib.

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.colors as colors
Salin selepas log masuk

Buat Data Sintetik

Dalam langkah ini, kami akan mencipta set data sintetik yang terdiri daripada dua bonggol, satu negatif dan satu positif, dengan bonggol positif mempunyai amplitud lapan kali lebih besar daripada bonggol negatif. Kami kemudiannya akan menggunakan SymLogNorm untuk menggambarkan data.

def rbf(x, y):
    return 1.0 / (1 + 5 * ((x ** 2) + (y ** 2)))

N = 200
gain = 8
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = rbf(X + 0.5, Y + 0.5)
Z2 = rbf(X - 0.5, Y - 0.5)
Z = gain * Z1 - Z2

shadeopts = {'cmap': 'PRGn', 'shading': 'gouraud'}
colormap = 'PRGn'
lnrwidth = 0.5
Salin selepas log masuk

Gunakan SymLogNorm

Dalam langkah ini, kami akan menggunakan SymLogNorm pada data sintetik dan memvisualisasikan hasilnya.

fig, ax = plt.subplots(2, 1, sharex=True, sharey=True)

pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1,
                                              vmin=-gain, vmax=gain, base=10),
                       **shadeopts)
fig.colorbar(pcm, ax=ax[0], extend='both')
ax[0].text(-2.5, 1.5, 'symlog')

pcm = ax[1].pcolormesh(X, Y, Z, vmin=-gain, vmax=gain,
                       **shadeopts)
fig.colorbar(pcm, ax=ax[1], extend='both')
ax[1].text(-2.5, 1.5, 'linear')

plt.show()
Salin selepas log masuk

Gunakan AsinhNorm

Dalam langkah ini, kami akan menggunakan AsinhNorm pada data sintetik dan memvisualisasikan hasilnya.

fig, ax = plt.subplots(2, 1, sharex=True, sharey=True)

pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1,
                                              vmin=-gain, vmax=gain, base=10),
                       **shadeopts)
fig.colorbar(pcm, ax=ax[0], extend='both')
ax[0].text(-2.5, 1.5, 'symlog')

pcm = ax[1].pcolormesh(X, Y, Z,
                       norm=colors.AsinhNorm(linear_width=lnrwidth,
                                             vmin=-gain, vmax=gain),
                       **shadeopts)
fig.colorbar(pcm, ax=ax[1], extend='both')
ax[1].text(-2.5, 1.5, 'asinh')

plt.show()
Salin selepas log masuk

Ringkasan

Dalam makmal ini, kami mempelajari cara menggunakan SymLogNorm dan AsinhNorm untuk memetakan peta warna pada data tak linear. Dengan menggunakan kaedah penormalan ini, kami dapat menggambarkan data dengan lebih tepat dan membezakan butiran data dengan lebih mudah.


? Amalkan Sekarang: Penormalan Peta Warna Matplotlib


Ingin Ketahui Lebih Lanjut?

  • ? Ketahui Pokok Kemahiran Python terkini
  • ? Baca Lagi Tutorial Python
  • ? Sertai Discord kami atau tweet kami @WeAreLabEx

Atas ialah kandungan terperinci Penormalan Peta Warna Matplotlib: Memvisualisasikan Data Tak Linear. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Apr 01, 2025 pm 05:09 PM

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah? Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah? Apr 02, 2025 am 07:15 AM

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Apr 01, 2025 pm 11:15 PM

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Apr 01, 2025 pm 10:51 PM

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam? Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam? Apr 02, 2025 am 07:18 AM

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimana untuk mendapatkan data berita yang melangkaui mekanisme anti-crawler Investing.com? Bagaimana untuk mendapatkan data berita yang melangkaui mekanisme anti-crawler Investing.com? Apr 02, 2025 am 07:03 AM

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...

See all articles