Kawan-kawan, Dalam Operasi IT, adalah tugas yang sangat umum untuk memantau metrik pelayan seperti penggunaan cpu/memori dan cakera atau sistem fail, tetapi sekiranya mana-mana metrik dicetuskan untuk menjadi kritikal, maka orang yang berdedikasi perlu melaksanakan beberapa asas menyelesaikan masalah dengan melog masuk ke pelayan dan ketahui punca penggunaan awal yang perlu dilakukan oleh seseorang berkali-kali jika dia mendapat makluman yang sama yang menimbulkan kebosanan dan tidak produktif sama sekali. Jadi sebagai penyelesaian, boleh ada sistem yang dibangunkan yang akan bertindak balas apabila penggera dicetuskan dan bertindak ke atas kejadian tersebut dengan melaksanakan beberapa arahan penyelesaian masalah asas. Sekadar meringkaskan penyataan masalah dan jangkaan -
Membangunkan sistem yang akan memenuhi di bawah jangkaan -
A. Pemasangan Ejen CloudWatch dan Persediaan Konfigurasi :
Buka konsol Pengurus Sistem dan klik pada "Dokumen"
Cari dokumen "AWS-ConfigureAWSPackage" dan laksanakan dengan memberikan butiran yang diperlukan.
Nama Pakej = AmazonCloudwatchAgent
Selepas pemasangan, ejen CloudWatch perlu dikonfigurasikan mengikut fail konfigurasi. Untuk ini, laksanakan dokumen AmazonCloudWatch-ManageAgent. Selain itu, pastikan fail konfigurasi JSON CloudWatch disimpan dalam Parameter SSM.
Sebaik sahaja anda melihat bahawa metrik melaporkan kepada konsol CloudWatch, kemudian buat penggera untuk penggunaan CPU dan Memori dll.
B. Sediakan Peraturan EventBridge :
Untuk menjejaki perubahan keadaan penggera, di sini, kami telah memperibadikan corak sedikit untuk menjejaki perubahan keadaan penggera daripada OK kepada ALARM sahaja, bukan membalikkan satu. Kemudian, tambahkan peraturan ini pada fungsi lambda sebagai pencetus.
{ "source": ["aws.cloudwatch"], "detail-type": ["CloudWatch Alarm State Change"], "detail": { "state": { "value": ["ALARM"] }, "previousState": { "value": ["OK"] } } }
Prasyarat Lambda :
Kami memerlukan modul di bawah untuk diimport untuk membuat kod berfungsi -
Nota: Daripada modul di atas, kecuali selebihnya modul 'permintaan' semuanya dimuat turun dalam infrastruktur asas lambda secara lalai. Mengimport modul 'permintaan' secara langsung tidak akan disokong dalam Lambda. Oleh itu, mula-mula, pasang modul permintaan dalam folder dalam mesin tempatan anda (komputer riba) dengan melaksanakan arahan di bawah -
pip3 install requests -t <directory path> --no-user
_Selepas itu, ini akan dimuat turun dalam folder dari mana anda melaksanakan arahan di atas atau tempat anda ingin menyimpan kod sumber modul, di sini saya harap kod lambda sedang disediakan dalam mesin tempatan anda. Jika ya, kemudian buat fail zip bagi keseluruhan kod sumber lambda itu dengan modul. Selepas itu, muat naik fail zip ke fungsi lambda.
Jadi, di sini kami beraksi di bawah dua senario -
1. Penggunaan CPU - Jika penggera penggunaan CPU dicetuskan, maka fungsi lambda perlu mengambil tika dan log masuk ke tika itu dan melaksanakan 5 proses penggunaan tinggi teratas. Kemudian, ia akan mencipta isu JIRA dan menambah butiran proses di bahagian komen. Pada masa yang sama, ia akan menghantar e-mel dengan butiran penggera dan butiran isu jira dengan output proses.
2. Penggunaan Memori - Pendekatan yang sama seperti di atas
Now, let me reframe the task details which lambda is supposed to perform -
First Set (Define the cpu and memory function) :
################# Importing Required Modules ################ ############################################################ import json import boto3 import time import os import sys sys.path.append('./python') ## This will add requests module along with all dependencies into this script import requests from requests.auth import HTTPBasicAuth ################## Calling AWS Services ################### ########################################################### ssm = boto3.client('ssm') sns_client = boto3.client('sns') ec2 = boto3.client('ec2') ################## Defining Blank Variable ################ ########################################################### cpu_process_op = '' mem_process_op = '' issueid = '' issuekey = '' issuelink = '' ################# Function for CPU Utilization ################ ############################################################### def cpu_utilization(instanceid, metric_name, previous_state, current_state): global cpu_process_op if previous_state == 'OK' and current_state == 'ALARM': command = 'ps -eo user,pid,ppid,cmd,%mem,%cpu --sort=-%cpu | head -5' print(f'Impacted Instance ID is : {instanceid}, Metric Name: {metric_name}') # Start a session print(f'Starting session to {instanceid}') response = ssm.send_command(InstanceIds = [instanceid], DocumentName="AWS-RunShellScript", Parameters={'commands': [command]}) command_id = response['Command']['CommandId'] print(f'Command ID: {command_id}') # Retrieve the command output time.sleep(4) output = ssm.get_command_invocation(CommandId=command_id, InstanceId=instanceid) print('Please find below output -\n', output['StandardOutputContent']) cpu_process_op = output['StandardOutputContent'] else: print('None') ################# Function for Memory Utilization ################ ############################################################### def mem_utilization(instanceid, metric_name, previous_state, current_state): global mem_process_op if previous_state == 'OK' and current_state == 'ALARM': command = 'ps -eo user,pid,ppid,cmd,%mem,%cpu --sort=-%mem | head -5' print(f'Impacted Instance ID is : {instanceid}, Metric Name: {metric_name}') # Start a session print(f'Starting session to {instanceid}') response = ssm.send_command(InstanceIds = [instanceid], DocumentName="AWS-RunShellScript", Parameters={'commands': [command]}) command_id = response['Command']['CommandId'] print(f'Command ID: {command_id}') # Retrieve the command output time.sleep(4) output = ssm.get_command_invocation(CommandId=command_id, InstanceId=instanceid) print('Please find below output -\n', output['StandardOutputContent']) mem_process_op = output['StandardOutputContent'] else: print('None')
Second Set (Create JIRA Issue) :
################## Create JIRA Issue ################ ##################################################### def create_issues(instanceid, metric_name, account, timestamp, region, current_state, previous_state, cpu_process_op, mem_process_op, metric_val): ## Create Issue ## url ='https://<your-user-name>.atlassian.net//rest/api/2/issue' username = os.environ['username'] api_token = os.environ['token'] project = 'AnirbanSpace' issue_type = 'Incident' assignee = os.environ['username'] summ_metric = '%CPU Utilization' if 'CPU' in metric_name else '%Memory Utilization' if 'mem' in metric_name else '%Filesystem Utilization' if metric_name == 'disk_used_percent' else None metric_val = metric_val summary = f'Client | {account} | {instanceid} | {summ_metric} | Metric Value: {metric_val}' description = f'Client: Company\nAccount: {account}\nRegion: {region}\nInstanceID = {instanceid}\nTimestamp = {timestamp}\nCurrent State: {current_state}\nPrevious State = {previous_state}\nMetric Value = {metric_val}' issue_data = { "fields": { "project": { "key": "SCRUM" }, "summary": summary, "description": description, "issuetype": { "name": issue_type }, "assignee": { "name": assignee } } } data = json.dumps(issue_data) headers = { "Accept": "application/json", "Content-Type": "application/json" } auth = HTTPBasicAuth(username, api_token) response = requests.post(url, headers=headers, auth=auth, data=data) global issueid global issuekey global issuelink issueid = response.json().get('id') issuekey = response.json().get('key') issuelink = response.json().get('self') ################ Add Comment To Above Created JIRA Issue ################### output = cpu_process_op if metric_name == 'CPUUtilization' else mem_process_op if metric_name == 'mem_used_percent' else None comment_api_url = f"{url}/{issuekey}/comment" add_comment = requests.post(comment_api_url, headers=headers, auth=auth, data=json.dumps({"body": output})) ## Check the response if response.status_code == 201: print("Issue created successfully. Issue key:", response.json().get('key')) else: print(f"Failed to create issue. Status code: {response.status_code}, Response: {response.text}")
Third Set (Send an Email) :
################## Send An Email ################ ################################################# def send_email(instanceid, metric_name, account, region, timestamp, current_state, current_reason, previous_state, previous_reason, cpu_process_op, mem_process_op, metric_val, issueid, issuekey, issuelink): ### Define a dictionary of custom input ### metric_list = {'mem_used_percent': 'Memory', 'disk_used_percent': 'Disk', 'CPUUtilization': 'CPU'} ### Conditions ### if previous_state == 'OK' and current_state == 'ALARM' and metric_name in list(metric_list.keys()): metric_msg = metric_list[metric_name] output = cpu_process_op if metric_name == 'CPUUtilization' else mem_process_op if metric_name == 'mem_used_percent' else None print('This is output', output) email_body = f"Hi Team, \n\nPlease be informed that {metric_msg} utilization is high for the instanceid {instanceid}. Please find below more information \n\nAlarm Details:\nMetricName = {metric_name}, \nAccount = {account}, \nTimestamp = {timestamp}, \nRegion = {region}, \nInstanceID = {instanceid}, \nCurrentState = {current_state}, \nReason = {current_reason}, \nMetricValue = {metric_val}, \nThreshold = 80.00 \n\nProcessOutput: \n{output}\nIncident Deatils:\nIssueID = {issueid}, \nIssueKey = {issuekey}, \nLink = {issuelink}\n\nRegards,\nAnirban Das,\nGlobal Cloud Operations Team" res = sns_client.publish( TopicArn = os.environ['snsarn'], Subject = f'High {metric_msg} Utilization Alert : {instanceid}', Message = str(email_body) ) print('Mail has been sent') if res else print('Email not sent') else: email_body = str(0)
Fourth Set (Calling Lambda Handler Function) :
################## Lambda Handler Function ################ ########################################################### def lambda_handler(event, context): instanceid = event['detail']['configuration']['metrics'][0]['metricStat']['metric']['dimensions']['InstanceId'] metric_name = event['detail']['configuration']['metrics'][0]['metricStat']['metric']['name'] account = event['account'] timestamp = event['time'] region = event['region'] current_state = event['detail']['state']['value'] current_reason = event['detail']['state']['reason'] previous_state = event['detail']['previousState']['value'] previous_reason = event['detail']['previousState']['reason'] metric_val = json.loads(event['detail']['state']['reasonData'])['evaluatedDatapoints'][0]['value'] ##### function calling ##### if metric_name == 'CPUUtilization': cpu_utilization(instanceid, metric_name, previous_state, current_state) create_issues(instanceid, metric_name, account, timestamp, region, current_state, previous_state, cpu_process_op, mem_process_op, metric_val) send_email(instanceid, metric_name, account, region, timestamp, current_state, current_reason, previous_state, previous_reason, cpu_process_op, mem_process_op, metric_val, issueid, issuekey, issuelink) elif metric_name == 'mem_used_percent': mem_utilization(instanceid, metric_name, previous_state, current_state) create_issues(instanceid, metric_name, account, timestamp, region, current_state, previous_state, cpu_process_op, mem_process_op, metric_val) send_email(instanceid, metric_name, account, region, timestamp, current_state, current_reason, previous_state, previous_reason, cpu_process_op, mem_process_op, metric_val, issueid, issuekey, issuelink) else: None
Alarm Email Screenshot :
Note: In ideal scenario, threshold is 80%, but for testing I changed it to 10%. Please see the Reason.
Alarm JIRA Issue :
In this scenario, if any server cpu or memory utilization metrics data are not captured, then alarm state gets changed from OK to INSUFFICIENT_DATA. This state can be achieved in two ways - a.) If server is in stopped state b.) If CloudWatch agent is not running or went in dead state.
So, as per below script, you'll be able to see that when cpu or memory utilization alarm status gets insufficient data, then lambda will first check if instance is in running status or not. If instance is in running state, then it will login and check CloudWatch agent status. Post that, it will create a JIRA issue and post the agent status in comment section of JIRA issue. After that, it will send an email with alarm details and agent status.
Full Code :
################# Importing Required Modules ################ ############################################################ import json import boto3 import time import os import sys sys.path.append('./python') ## This will add requests module along with all dependencies into this script import requests from requests.auth import HTTPBasicAuth ################## Calling AWS Services ################### ########################################################### ssm = boto3.client('ssm') sns_client = boto3.client('sns') ec2 = boto3.client('ec2') ################## Defining Blank Variable ################ ########################################################### cpu_process_op = '' mem_process_op = '' issueid = '' issuekey = '' issuelink = '' ################# Function for CPU Utilization ################ ############################################################### def cpu_utilization(instanceid, metric_name, previous_state, current_state): global cpu_process_op if previous_state == 'OK' and current_state == 'INSUFFICIENT_DATA': ec2_status = ec2.describe_instance_status(InstanceIds=[instanceid,])['InstanceStatuses'][0]['InstanceState']['Name'] if ec2_status == 'running': command = 'systemctl status amazon-cloudwatch-agent;sleep 3;systemctl restart amazon-cloudwatch-agent' print(f'Impacted Instance ID is : {instanceid}, Metric Name: {metric_name}') # Start a session print(f'Starting session to {instanceid}') response = ssm.send_command(InstanceIds = [instanceid], DocumentName="AWS-RunShellScript", Parameters={'commands': [command]}) command_id = response['Command']['CommandId'] print(f'Command ID: {command_id}') # Retrieve the command output time.sleep(4) output = ssm.get_command_invocation(CommandId=command_id, InstanceId=instanceid) print('Please find below output -\n', output['StandardOutputContent']) cpu_process_op = output['StandardOutputContent'] else: cpu_process_op = f'Instance current status is {ec2_status}. Not able to reach out!!' print(f'Instance current status is {ec2_status}. Not able to reach out!!') else: print('None') ################# Function for Memory Utilization ################ ############################################################### def mem_utilization(instanceid, metric_name, previous_state, current_state): global mem_process_op if previous_state == 'OK' and current_state == 'INSUFFICIENT_DATA': ec2_status = ec2.describe_instance_status(InstanceIds=[instanceid,])['InstanceStatuses'][0]['InstanceState']['Name'] if ec2_status == 'running': command = 'systemctl status amazon-cloudwatch-agent' print(f'Impacted Instance ID is : {instanceid}, Metric Name: {metric_name}') # Start a session print(f'Starting session to {instanceid}') response = ssm.send_command(InstanceIds = [instanceid], DocumentName="AWS-RunShellScript", Parameters={'commands': [command]}) command_id = response['Command']['CommandId'] print(f'Command ID: {command_id}') # Retrieve the command output time.sleep(4) output = ssm.get_command_invocation(CommandId=command_id, InstanceId=instanceid) print('Please find below output -\n', output['StandardOutputContent']) mem_process_op = output['StandardOutputContent'] print(mem_process_op) else: mem_process_op = f'Instance current status is {ec2_status}. Not able to reach out!!' print(f'Instance current status is {ec2_status}. Not able to reach out!!') else: print('None') ################## Create JIRA Issue ################ ##################################################### def create_issues(instanceid, metric_name, account, timestamp, region, current_state, previous_state, cpu_process_op, mem_process_op, metric_val): ## Create Issue ## url ='https://<your-user-name>.atlassian.net//rest/api/2/issue' username = os.environ['username'] api_token = os.environ['token'] project = 'AnirbanSpace' issue_type = 'Incident' assignee = os.environ['username'] summ_metric = '%CPU Utilization' if 'CPU' in metric_name else '%Memory Utilization' if 'mem' in metric_name else '%Filesystem Utilization' if metric_name == 'disk_used_percent' else None metric_val = metric_val summary = f'Client | {account} | {instanceid} | {summ_metric} | Metric Value: {metric_val}' description = f'Client: Company\nAccount: {account}\nRegion: {region}\nInstanceID = {instanceid}\nTimestamp = {timestamp}\nCurrent State: {current_state}\nPrevious State = {previous_state}\nMetric Value = {metric_val}' issue_data = { "fields": { "project": { "key": "SCRUM" }, "summary": summary, "description": description, "issuetype": { "name": issue_type }, "assignee": { "name": assignee } } } data = json.dumps(issue_data) headers = { "Accept": "application/json", "Content-Type": "application/json" } auth = HTTPBasicAuth(username, api_token) response = requests.post(url, headers=headers, auth=auth, data=data) global issueid global issuekey global issuelink issueid = response.json().get('id') issuekey = response.json().get('key') issuelink = response.json().get('self') ################ Add Comment To Above Created JIRA Issue ################### output = cpu_process_op if metric_name == 'CPUUtilization' else mem_process_op if metric_name == 'mem_used_percent' else None comment_api_url = f"{url}/{issuekey}/comment" add_comment = requests.post(comment_api_url, headers=headers, auth=auth, data=json.dumps({"body": output})) ## Check the response if response.status_code == 201: print("Issue created successfully. Issue key:", response.json().get('key')) else: print(f"Failed to create issue. Status code: {response.status_code}, Response: {response.text}") ################## Send An Email ################ ################################################# def send_email(instanceid, metric_name, account, region, timestamp, current_state, current_reason, previous_state, previous_reason, cpu_process_op, mem_process_op, metric_val, issueid, issuekey, issuelink): ### Define a dictionary of custom input ### metric_list = {'mem_used_percent': 'Memory', 'disk_used_percent': 'Disk', 'CPUUtilization': 'CPU'} ### Conditions ### if previous_state == 'OK' and current_state == 'INSUFFICIENT_DATA' and metric_name in list(metric_list.keys()): metric_msg = metric_list[metric_name] output = cpu_process_op if metric_name == 'CPUUtilization' else mem_process_op if metric_name == 'mem_used_percent' else None email_body = f"Hi Team, \n\nPlease be informed that {metric_msg} utilization alarm state has been changed to {current_state} for the instanceid {instanceid}. Please find below more information \n\nAlarm Details:\nMetricName = {metric_name}, \n Account = {account}, \nTimestamp = {timestamp}, \nRegion = {region}, \nInstanceID = {instanceid}, \nCurrentState = {current_state}, \nReason = {current_reason}, \nMetricValue = {metric_val}, \nThreshold = 80.00 \n\nProcessOutput = \n{output}\nIncident Deatils:\nIssueID = {issueid}, \nIssueKey = {issuekey}, \nLink = {issuelink}\n\nRegards,\nAnirban Das,\nGlobal Cloud Operations Team" res = sns_client.publish( TopicArn = os.environ['snsarn'], Subject = f'Insufficient {metric_msg} Utilization Alarm : {instanceid}', Message = str(email_body) ) print('Mail has been sent') if res else print('Email not sent') else: email_body = str(0) ################## Lambda Handler Function ################ ########################################################### def lambda_handler(event, context): instanceid = event['detail']['configuration']['metrics'][0]['metricStat']['metric']['dimensions']['InstanceId'] metric_name = event['detail']['configuration']['metrics'][0]['metricStat']['metric']['name'] account = event['account'] timestamp = event['time'] region = event['region'] current_state = event['detail']['state']['value'] current_reason = event['detail']['state']['reason'] previous_state = event['detail']['previousState']['value'] previous_reason = event['detail']['previousState']['reason'] metric_val = 'NA' ##### function calling ##### if metric_name == 'CPUUtilization': cpu_utilization(instanceid, metric_name, previous_state, current_state) create_issues(instanceid, metric_name, account, timestamp, region, current_state, previous_state, cpu_process_op, mem_process_op, metric_val) send_email(instanceid, metric_name, account, region, timestamp, current_state, current_reason, previous_state, previous_reason, cpu_process_op, mem_process_op, metric_val, issueid, issuekey, issuelink) elif metric_name == 'mem_used_percent': mem_utilization(instanceid, metric_name, previous_state, current_state) create_issues(instanceid, metric_name, account, timestamp, region, current_state, previous_state, cpu_process_op, mem_process_op, metric_val) send_email(instanceid, metric_name, account, region, timestamp, current_state, current_reason, previous_state, previous_reason, cpu_process_op, mem_process_op, metric_val, issueid, issuekey, issuelink) else: None
Insufficient Data Email Screenshot :
Insufficient data JIRA Issue :
In this article, we have tested scenarios on both cpu and memory utilization, but there can be lots of metrics on which we can configure auto-incident and auto-email functionality which will reduce significant efforts in terms of monitoring and creating incidents and all. This solution has given a initial approach how we can proceed further, but for sure there can be other possibilities to achieve this goal. I believe you all will understand the way we tried to make this relatable. Please like and comment if you love this article or have any other suggestions, so that we can populate in coming articles. ??
Thanks!!
Anirban Das
Atas ialah kandungan terperinci Penyelesaian Masalah Automatik & Sistem ITSM menggunakan EventBridge dan Lambda. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!