


Mengintegrasikan lebih daripada 200 kajian berkaitan, semakan terkini model besar 'pembelajaran sepanjang hayat' ada di sini

Die AIxiv-Kolumne ist eine Kolumne, in der akademische und technische Inhalte auf dieser Website veröffentlicht werden. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. Einreichungs-E-Mail: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com
Papiertitel: Towards Lifelong Learning of Large Language Models: A Survey Institution: Südchina University of Technology University Papieradresse: https://arxiv.org/abs/2406.06391 Projektadresse: https://github .com/ qianlima-lab/awesome-lifelong-learning-methods-for-llm
Romanklassifizierung: Einführung Es wurde ein detaillierter strukturierter Rahmen entwickelt, der die umfangreiche Literatur zum lebenslangen Lernen in 12 Szenarien unterteilt. Universelle Techniken: Gemeinsame Techniken für alle Situationen des lebenslangen Lernens wurden identifiziert und präsentiert. Die Literatur ist in verschiedene unterteilt technische Gruppen in jedem Szenario; Zukünftige Richtungen: Schwerpunkt auf einigen neuen Technologien wie Modellerweiterung und Datenauswahl, die in der Zeit vor LLM weniger erforscht wurden.
Pengetahuan dalaman merujuk kepada penyerapan pengetahuan baharu ke dalam parameter model melalui latihan penuh atau separa, termasuk pra-latihan berterusan dan penalaan halus berterusan. -
Pengetahuan luaran merujuk kepada menggabungkan pengetahuan baharu daripada sumber luaran seperti Wikipedia atau antara muka program aplikasi ke dalam model tanpa mengemas kini parameter model, termasuk pembelajaran sepanjang hayat berasaskan pengambilan dan Alat untuk pembelajaran sepanjang hayat.
- Pralatihan Domain Menegak Berterusan: untuk bidang menegak tertentu (seperti kewangan, perubatan dll.).
- Pralatihan Domain Bahasa Berterusan: Pralatihan berterusan untuk bahasa semula jadi dan bahasa kod.
- Pralatihan Domain Temporal Berterusan: Pralatihan berterusan untuk data berkaitan masa (seperti data siri masa).
- Khusus Tugas:
- Pengkelasan Teks Berterusan: Untuk tugas pengelasan teks Penalaan halus berterusan.
- Pengiktirafan Entiti Dinamakan Berterusan: Penalaan halus berterusan untuk tugas pengecaman entiti dinamakan.
- Pengeluaran Hubungan Berterusan: Penalaan halus berterusan untuk tugas pengekstrakan hubungan.
- Terjemahan Mesin Berterusan: Penalaan halus berterusan untuk tugas terjemahan mesin.
- Agnostik Tugasan:
- Pelajaran Arahan Berterusan: Pembelajaran berterusan model dicapai melalui penalaan halus arahan.
- Pengeditan Pengetahuan Berterusan: Pembelajaran berterusan untuk pengemaskinian pengetahuan.
- Penjajaran Berterusan: Pembelajaran berterusan untuk menjajarkan model dengan tugasan baharu.
- Pengukuran Keseluruhan: termasuk Purata ketepatan (AA) dan purata ketepatan tambahan (AIA). AA merujuk kepada prestasi purata model selepas mempelajari semua tugasan, manakala AIA mengambil kira perubahan sejarah selepas mempelajari setiap tugasan.
- Pengukuran Kestabilan: termasuk pengukuran lupa (FGT) dan pemindahan ke belakang (BWT). FGT menilai penurunan prestasi purata tugas lama, manakala BWT menilai perubahan prestasi purata tugas lama.
- Pengukuran Keplastikan: termasuk pemindahan ke hadapan (FWD), iaitu purata peningkatan dalam prestasi model pada tugasan baharu.
Maksud: Kaedah ini digunakan apabila melatih tugas baharu Main semula data daripada tugasan sebelumnya untuk menyatukan ingatan model terhadap tugas lama. Biasanya, data yang dimainkan semula disimpan dalam penimbal dan digunakan untuk latihan bersama-sama dengan data tugas semasa. Terutamanya termasuk:
– Pengalaman Main Semula: Kurangkan lupa dengan menyimpan sebahagian daripada sampel data tugas lama dan menggunakan semula data ini untuk latihan apabila melatih tugasan baharu.
–Ulang Ulang Generatif: Tidak seperti menyimpan data lama, kaedah ini menggunakan model generatif untuk mencipta sampel pseudo, dengan itu memperkenalkan pengetahuan tentang tugas lama ke dalam latihan tugasan baharu.
Ilustrasi: Rajah 3 menunjukkan proses daripada Tugasan t-1 kepada Tugasan t Model sedang melatih Tugasan Apabila t , data lama dalam penimbal (Input t-1 ) digunakan.
Maksud: Kaedah ini menghalang model daripada melaraskan parameter tugas lama secara berlebihan apabila mempelajari tugasan baharu dengan mengenakan kekangan penyelarasan pada parameter model. Kekangan penyelarasan boleh membantu model mengekalkan ingatan tugas lama. Terutamanya termasuk:
– Penyelarasan Berat: Dengan mengenakan kekangan tambahan pada parameter model, ia mengehadkan pengubahsuaian pemberat penting apabila melatih tugas baharu, dengan itu melindungi integriti tugas lama. Sebagai contoh, regularization L2 dan Elastic Weight Consolidation (EWC) adalah teknik biasa.
–Penyaturan Ciri: Penyelarasan bukan sahaja boleh bertindak pada pemberat, tetapi juga memastikan pengagihan ciri antara tugas baharu dan lama kekal stabil dengan mengehadkan prestasi model dalam ruang ciri.
Ilustrasi: Rajah 3 menunjukkan proses daripada Tugasan t-1 kepada Tugasan t Model sedang melatih Tugasan Apabila t , penyelarasan parameter digunakan untuk mengekalkan prestasi pada Tugasan t-1.
Maksud: Pendekatan ini memberi tumpuan kepada menyesuaikan struktur model untuk menyepadukan tugas baharu dengan lancar sambil meminimumkan gangguan terhadap pengetahuan yang dipelajari sebelumnya. Ia terutamanya merangkumi enam kaedah dalam Rajah 4:
–(a) Penalaan Segera: Dengan menambahkan "Gesaan Lembut" sebelum input model , untuk membimbing penjanaan model atau tugas pengelasan. Kaedah ini hanya memerlukan pelarasan sebilangan kecil parameter (iaitu perkataan gesaan) tanpa mengubah struktur tulang belakang model.
–(b) Penalaan Awalan: Tambahkan parameter boleh laras terlatih pada bahagian awalan jujukan input Parameter ini dimasukkan ke dalam mekanisme perhatian kendiri lapisan Transformer untuk membantu model Menangkap maklumat kontekstual dengan lebih baik.
–(c) Penyesuaian Peringkat Rendah (LoRA, Penyesuaian Peringkat Rendah): LoRA menyesuaikan diri dengan tugas baharu dengan menambahkan matriks peringkat rendah pada tahap tertentu tanpa mengubah berat utama model besar. Pendekatan ini sangat mengurangkan bilangan pelarasan parameter sambil mengekalkan prestasi model.
–(d) Penyesuai: Penyesuai ialah modul boleh dilatih yang disisipkan di antara lapisan model yang berbeza Modul ini boleh menyesuaikan dengan sebilangan kecil parameter tambahan tanpa mengubah berat model asal. Biasanya digunakan dalam bahagian FFN (Rangkaian Feed Forward) dan MHA (Multi-Head Attention).
–(e) Campuran Pakar: Proses input berbeza dengan mengaktifkan modul "pakar" tertentu secara terpilih, yang boleh menjadi lapisan atau subrangkaian tertentu dalam model. Modul Penghala bertanggungjawab untuk menentukan modul pakar mana yang perlu diaktifkan.
–(f) Pengembangan Model: Kembangkan kapasiti model dengan menambah lapisan baharu (Lapisan Baharu) sambil mengekalkan lapisan asal (Lapisan Lama). Pendekatan ini membolehkan model meningkatkan kapasitinya secara beransur-ansur untuk menampung keperluan tugas yang lebih kompleks.
Ilustrasi: Rajah 3 menunjukkan proses daripada Tugasan t-1 kepada Tugasan t Apabila model mempelajari tugasan baharu, beberapa parameter Dibekukan. manakala modul yang baru ditambah digunakan untuk melatih tugasan baharu (Boleh Dilatih).
Maksud: Kaedah ini memindahkan pengetahuan model lama kepada model baharu melalui penyulingan pengetahuan. Apabila melatih tugasan baharu, model baharu bukan sahaja mempelajari data tugasan semasa, tetapi juga meniru output model lama untuk tugas lama, dengan itu mengekalkan pengetahuan tugas lama. Terutamanya termasuk:
Ilustrasi: Rajah 3 menunjukkan peralihan daripada Tugasan t-1 kepada Tugasan t Dalam proses, apabila model melatih tugas baru, ia mengekalkan pengetahuan tugas lama dengan meniru hasil ramalan model lama.
- Contoh: Med-PaLM memperkenalkan penalaan segera arahan dalam bidang perubatan dengan menggunakan sebilangan kecil contoh.
- Contoh: LLaMA Pro cemerlang dalam penggunaan umum, pengaturcaraan dan tugasan matematik dengan memperluaskan blok Transformer dan memperhalusinya dengan korpus baharu.
- Contoh: EcomGPT-CT meningkatkan prestasi model pada tugas khusus domain dengan data e-dagang separa berstruktur.
3.2 Pra-latihan dalam domain bahasa berterusan
-
例: Ibrahim らによって提案されたリウォーミング手法は、新しいデータをトレーニングするときに学習率を一時的に高めることで、モデルが新しい言語に迅速に適応できるようにします。
Contoh: Tugas pengelasan teks berterusan melatih model dengan memperkenalkan secara beransur-ansur kategori pengelasan baharu (seperti Niat: Pemindahan -> Niat: Skor Kredit -> Niat: Fakta Seronok) supaya ia boleh menyesuaikan diri dengan keperluan klasifikasi yang berubah-ubah.
Contoh : Tugasan pengecaman entiti bernama berterusan menunjukkan cara memperkenalkan jenis entiti baharu secara beransur-ansur (seperti Atlet -> Pasukan Sukan -> Ahli Politik) sambil mengiktiraf entiti tertentu, supaya model masih boleh mengekalkan pengiktirafan entiti lama sambil mengiktiraf keupayaan baharu .
Contoh: Tugas pengekstrakan perhubungan berterusan menunjukkan cara model secara beransur-ansur mengembangkan keupayaan pengekstrakan perhubungannya dengan terus memperkenalkan jenis perhubungan baharu (seperti Perkaitan: Ditubuhkan Oleh -> Perhubungan: Negeri atau Wilayah Lahir -> Perhubungan: Negara Ibu Pejabat).
Contoh: Tugas penyuntingan pengetahuan yang berterusan memastikan ia dapat menjawab fakta terkini dengan tepat dengan mengemas kini pangkalan pengetahuan model secara berterusan (seperti Siapakah presiden AS? -> Kelab manakah yang dimainkan oleh Cristiano Ronaldo? -> Di manakah Musim Sejuk yang lalu Olimpik diadakan?).
Contoh: Tugas terjemahan mesin yang berterusan menunjukkan kebolehsuaian model dalam persekitaran berbilang bahasa dengan mengembangkan secara beransur-ansur keupayaan terjemahan model ke dalam bahasa berbeza (seperti Inggeris -> Cina, Inggeris -> Sepanyol, Inggeris -> Perancis).
Contoh: Tugasan penalaan halus arahan berterusan melatih keupayaan prestasi model dalam pelbagai jenis tugasan dengan memperkenalkan jenis arahan baharu secara beransur-ansur (seperti Ringkasan -> Pemindahan Gaya -> Matematik).
Contoh: Berterusan Tugas penjajaran menunjukkan keupayaan pembelajaran berterusan model di bawah piawaian moral dan tingkah laku yang berbeza dengan memperkenalkan matlamat penjajaran baharu (seperti Membantu dan Tidak Memudaratkan -> Ringkas dan Tersusun -> Sentimen Positif).
はじめに: 世界中の情報が増え続ける中、スケールアップと進化過去のデータに基づいてトレーニングされた静的モデルはすぐに古くなり、新しい開発に関するコンテンツを理解したり生成したりできなくなります。検索ベースの生涯学習は、大規模な言語モデルが外部ソースから最新の知識を取得して吸収するという重要なニーズに対応し、モデルは必要に応じてこれらの外部リソースを取得することで知識ベースを補完または更新します。これらの外部リソースは、現在の大規模な知識ベースを提供し、事前トレーニングされた LLM の静的特性を強化するための重要な補完的な資産を提供します。 例: 図内のこれらの外部リソースは、モデルからアクセスおよび取得できます。ウィキペディア、書籍、データベースなどの外部情報ソースにアクセスすることで、モデルは知識を更新し、新しい情報に遭遇したときに適応することができます。
はじめに: ツールベースの生涯学習は、その機能を静的な知識を超えて拡張し、環境と動的に対話できるようにする必要性から生まれました。実際のアプリケーションでは、モデルは多くの場合、直接的なテキストの生成や解釈を超える操作を含むタスクを実行する必要があります。 例: 図のモデルは、これらのツールを使用して自身の機能を拡張および更新し、外部ツールとの対話を通じて生涯学習を可能にします。たとえば、モデルはアプリケーション プログラミング インターフェイスを通じてリアルタイム データを取得したり、物理ツールを通じて外部環境と対話して特定のタスクを完了したり、新しい知識を取得したりできます。
壊滅的な忘却: これは生涯学習の中核的な課題の 1 つであり、新しい情報の導入により上書きされる可能性があります。モデルが以前に学習したこと。 可塑性と安定性のジレンマ: モデルの学習能力と安定性の維持の間のバランスを見つけることが非常に重要であり、これはモデルが新しい知識を保持しながら新しい知識を獲得する能力に直接影響します。幅広い一般的な能力。 高額な計算コスト: 大規模な言語モデルを完全に微調整するための計算要件は非常に高くなる可能性があります。 モデルの重みや事前トレーニングされたデータが利用できない: プライバシー、独自の制限、または商用ライセンスのため、生のトレーニング データやモデルの重みは、さらなる改善のために利用できないことがよくあります。
特定のタスクから一般的なタスクへ: 研究は、特定のタスク (テキスト分類、固有表現認識など) から、命令調整、知識編集などのより広範囲の一般的なタスクに徐々に移行していきます。 完全な微調整から部分的な微調整へ: 完全な微調整、部分的な微調整戦略 (アダプター層、プロンプト チューニング、 LoRA) の人気はますます高まっています。 内部知識から外部知識へ: 頻繁な内部更新の制限を克服するために、検索拡張生成やツールなどの外部知識ソースを使用する戦略が増えています。学習によりモデルが可能になります。現在の外部データに動的にアクセスして活用します。
マルチモーダル生涯学習: テキストを超えた複数のモダリティ (画像、ビデオ、オーディオ、時系列データ、ナレッジ グラフなど) を生涯学習に統合し、より包括的で適応性のある性モデルを開発します。 効率的な生涯学習: 研究者たちは、モデルの枝刈り、モデルの結合、モデルの拡張、その他の方法など、モデルのトレーニングと更新の計算要件を管理するためのより効率的な戦略の開発に取り組んでいます。 普遍的な生涯学習: 最終的な目標は、大規模な言語モデルが、静的なデータセットのみに依存することなく、新しい知識を積極的に獲得し、環境との動的な相互作用を通じて学習できるようにすることです。
Atas ialah kandungan terperinci Mengintegrasikan lebih daripada 200 kajian berkaitan, semakan terkini model besar 'pembelajaran sepanjang hayat' ada di sini. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Dalam pembuatan moden, pengesanan kecacatan yang tepat bukan sahaja kunci untuk memastikan kualiti produk, tetapi juga teras untuk meningkatkan kecekapan pengeluaran. Walau bagaimanapun, set data pengesanan kecacatan sedia ada selalunya tidak mempunyai ketepatan dan kekayaan semantik yang diperlukan untuk aplikasi praktikal, menyebabkan model tidak dapat mengenal pasti kategori atau lokasi kecacatan tertentu. Untuk menyelesaikan masalah ini, pasukan penyelidik terkemuka yang terdiri daripada Universiti Sains dan Teknologi Hong Kong Guangzhou dan Teknologi Simou telah membangunkan set data "DefectSpectrum" secara inovatif, yang menyediakan anotasi berskala besar yang kaya dengan semantik bagi kecacatan industri. Seperti yang ditunjukkan dalam Jadual 1, berbanding set data industri lain, set data "DefectSpectrum" menyediakan anotasi kecacatan yang paling banyak (5438 sampel kecacatan) dan klasifikasi kecacatan yang paling terperinci (125 kategori kecacatan

Editor |KX Sehingga hari ini, perincian dan ketepatan struktur yang ditentukan oleh kristalografi, daripada logam ringkas kepada protein membran yang besar, tidak dapat ditandingi oleh mana-mana kaedah lain. Walau bagaimanapun, cabaran terbesar, yang dipanggil masalah fasa, kekal mendapatkan maklumat fasa daripada amplitud yang ditentukan secara eksperimen. Penyelidik di Universiti Copenhagen di Denmark telah membangunkan kaedah pembelajaran mendalam yang dipanggil PhAI untuk menyelesaikan masalah fasa kristal Rangkaian saraf pembelajaran mendalam yang dilatih menggunakan berjuta-juta struktur kristal tiruan dan data pembelauan sintetik yang sepadan boleh menghasilkan peta ketumpatan elektron yang tepat. Kajian menunjukkan bahawa kaedah penyelesaian struktur ab initio berasaskan pembelajaran mendalam ini boleh menyelesaikan masalah fasa pada resolusi hanya 2 Angstrom, yang bersamaan dengan hanya 10% hingga 20% daripada data yang tersedia pada resolusi atom, manakala Pengiraan ab initio tradisional

Komuniti LLM terbuka ialah era apabila seratus bunga mekar dan bersaing Anda boleh melihat Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 dan banyak lagi. model yang cemerlang. Walau bagaimanapun, berbanding dengan model besar proprietari yang diwakili oleh GPT-4-Turbo, model terbuka masih mempunyai jurang yang ketara dalam banyak bidang. Selain model umum, beberapa model terbuka yang mengkhusus dalam bidang utama telah dibangunkan, seperti DeepSeek-Coder-V2 untuk pengaturcaraan dan matematik, dan InternVL untuk tugasan bahasa visual.

Bagi AI, Olimpik Matematik tidak lagi menjadi masalah. Pada hari Khamis, kecerdasan buatan Google DeepMind menyelesaikan satu kejayaan: menggunakan AI untuk menyelesaikan soalan sebenar IMO Olimpik Matematik Antarabangsa tahun ini, dan ia hanya selangkah lagi untuk memenangi pingat emas. Pertandingan IMO yang baru berakhir minggu lalu mempunyai enam soalan melibatkan algebra, kombinatorik, geometri dan teori nombor. Sistem AI hibrid yang dicadangkan oleh Google mendapat empat soalan dengan betul dan memperoleh 28 mata, mencapai tahap pingat perak. Awal bulan ini, profesor UCLA, Terence Tao baru sahaja mempromosikan Olimpik Matematik AI (Anugerah Kemajuan AIMO) dengan hadiah berjuta-juta dolar Tanpa diduga, tahap penyelesaian masalah AI telah meningkat ke tahap ini sebelum Julai. Lakukan soalan secara serentak pada IMO Perkara yang paling sukar untuk dilakukan dengan betul ialah IMO, yang mempunyai sejarah terpanjang, skala terbesar dan paling negatif

Pada tahun 2023, hampir setiap bidang AI berkembang pada kelajuan yang tidak pernah berlaku sebelum ini. Pada masa yang sama, AI sentiasa menolak sempadan teknologi trek utama seperti kecerdasan yang terkandung dan pemanduan autonomi. Di bawah trend berbilang modal, adakah status Transformer sebagai seni bina arus perdana model besar AI akan digoncang? Mengapakah penerokaan model besar berdasarkan seni bina MoE (Campuran Pakar) menjadi trend baharu dalam industri? Bolehkah Model Penglihatan Besar (LVM) menjadi satu kejayaan baharu dalam penglihatan umum? ...Daripada surat berita ahli PRO 2023 laman web ini yang dikeluarkan dalam tempoh enam bulan lalu, kami telah memilih 10 tafsiran khas yang menyediakan analisis mendalam tentang aliran teknologi dan perubahan industri dalam bidang di atas untuk membantu anda mencapai matlamat anda dalam bidang baharu. tahun. Tafsiran ini datang dari Week50 2023

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Editor |. KX Retrosynthesis ialah tugas kritikal dalam penemuan ubat dan sintesis organik, dan AI semakin digunakan untuk mempercepatkan proses. Kaedah AI sedia ada mempunyai prestasi yang tidak memuaskan dan kepelbagaian terhad. Dalam amalan, tindak balas kimia sering menyebabkan perubahan molekul tempatan, dengan pertindihan yang besar antara bahan tindak balas dan produk. Diilhamkan oleh ini, pasukan Hou Tingjun di Universiti Zhejiang mencadangkan untuk mentakrifkan semula ramalan retrosintetik satu langkah sebagai tugas penyuntingan rentetan molekul, secara berulang menapis rentetan molekul sasaran untuk menghasilkan sebatian prekursor. Dan model retrosintetik berasaskan penyuntingan EditRetro dicadangkan, yang boleh mencapai ramalan berkualiti tinggi dan pelbagai. Eksperimen yang meluas menunjukkan bahawa model itu mencapai prestasi cemerlang pada set data penanda aras standard USPTO-50 K, dengan ketepatan 1 teratas 60.8%.

Editor |. ScienceAI Berdasarkan data klinikal yang terhad, beratus-ratus algoritma perubatan telah diluluskan. Para saintis sedang membahaskan siapa yang harus menguji alat dan cara terbaik untuk melakukannya. Devin Singh menyaksikan seorang pesakit kanak-kanak di bilik kecemasan mengalami serangan jantung semasa menunggu rawatan untuk masa yang lama, yang mendorongnya untuk meneroka aplikasi AI untuk memendekkan masa menunggu. Menggunakan data triage daripada bilik kecemasan SickKids, Singh dan rakan sekerja membina satu siri model AI untuk menyediakan potensi diagnosis dan mengesyorkan ujian. Satu kajian menunjukkan bahawa model ini boleh mempercepatkan lawatan doktor sebanyak 22.3%, mempercepatkan pemprosesan keputusan hampir 3 jam bagi setiap pesakit yang memerlukan ujian perubatan. Walau bagaimanapun, kejayaan algoritma kecerdasan buatan dalam penyelidikan hanya mengesahkan perkara ini
