Rumah > pembangunan bahagian belakang > Tutorial Python > Soalan dan Jawapan Temuduga Pembelajaran Mesin Python Teratas

Soalan dan Jawapan Temuduga Pembelajaran Mesin Python Teratas

王林
Lepaskan: 2024-09-10 20:31:49
asal
372 orang telah melayarinya

Top Python Machine Learning Interview Questions and Answers

Pembelajaran Mesin (ML) ialah salah satu bidang yang paling dicari dalam industri teknologi, dan kemahiran dalam Python selalunya menjadi prasyarat memandangkan perpustakaannya yang luas dan kemudahan penggunaan. Jika anda sedang bersiap sedia untuk temu duga dalam domain ini, adalah penting untuk mahir dalam kedua-dua konsep teori dan pelaksanaan praktikal. Berikut ialah beberapa soalan dan jawapan temu duga Python ML untuk membantu anda membuat persediaan.

1. Apakah Teknik Pra-pemprosesan yang Anda Paling Biasa Dalam Python?

Teknik pra-pemprosesan adalah penting untuk menyediakan data untuk model pembelajaran mesin. Beberapa teknik yang paling biasa termasuk:

  • Penormalan: Melaraskan nilai dalam vektor ciri kepada skala biasa tanpa memesongkan perbezaan dalam julat nilai.
  • Pembolehubah Dummy: Menggunakan panda untuk mencipta pembolehubah penunjuk (0 atau 1) yang menunjukkan sama ada pembolehubah kategori boleh mengambil nilai tertentu.
  • Menyemak Outlier: Beberapa kaedah boleh digunakan, termasuk ralat univariate, multivariate dan Minkowski.

Contoh Kod:

from sklearn.preprocessing import MinMaxScaler
import pandas as pd

# Data normalization
scaler = MinMaxScaler()
normalized_data = scaler.fit_transform(data)

# Creating dummy variables
df_with_dummies = pd.get_dummies(data, drop_first=True)
Salin selepas log masuk

2. Apakah Algoritma Brute Force? Berikan Contoh.

Algoritma brute force cuba sepenuhnya semua kemungkinan untuk mencari penyelesaian. Contoh biasa ialah carian linear, di mana algoritma menyemak setiap elemen tatasusunan untuk mencari padanan.

Contoh Kod:

def linear_search(arr, target):
    for i in range(len(arr)):
        if arr[i] == target:
            return i
    return -1

# Example usage
arr = [2, 3, 4, 10, 40]
target = 10
result = linear_search(arr, target)
Salin selepas log masuk

3. Apakah Beberapa Cara untuk Mengendalikan Set Data Tidak Seimbang?

Sebuah set data tidak seimbang telah memesongkan perkadaran kelas. Strategi untuk menangani perkara ini termasuk:

  • Mengumpul Lebih Banyak Data: Mengumpul lebih banyak data untuk kelas minoriti.
  • Pensampelan Semula: Sama ada terlebih pensampelan kelas minoriti atau kurang pensampelan kelas majoriti.
  • SMOTE (Teknik Pensampelan Terlebih Minoriti Sintetik): Menjana sampel sintetik untuk kelas minoriti.
  • Pelarasan Algoritma: Menggunakan algoritma yang boleh menangani ketidakseimbangan, seperti kaedah membonceng atau meningkatkan.

Contoh Kod:

from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split

X_resampled, y_resampled = SMOTE().fit_resample(X, y)
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2)
Salin selepas log masuk

4. Apakah Beberapa Cara untuk Mengendalikan Data Hilang dalam Python?

Strategi biasa untuk mengendalikan data yang hilang termasuk Pengabaikan dan Imputasi:

  • Pengabaikan: Mengalih keluar baris atau lajur dengan nilai yang tiada.
  • Imputasi: Mengisi nilai yang tiada menggunakan teknik seperti min, median, mod atau kaedah lanjutan seperti SimpleImputer atau IterativeImputer.

Contoh Kod:

from sklearn.impute import SimpleImputer

# Imputing missing values
imputer = SimpleImputer(strategy='median')
data_imputed = imputer.fit_transform(data)
Salin selepas log masuk

5. Apakah Regresi? Bagaimana Anda Melaksanakan Regresi dalam Python?

Regression ialah teknik pembelajaran diselia yang digunakan untuk mencari korelasi antara pembolehubah dan membuat ramalan bagi pembolehubah bersandar. Contoh biasa termasuk regresi linear dan regresi logistik, yang boleh dilaksanakan menggunakan Scikit-learn.

Contoh Kod:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Create and train the model
model = LinearRegression()
model.fit(X_train, y_train)

# Make predictions
predictions = model.predict(X_test)
Salin selepas log masuk

6. Bagaimanakah Anda Membahagikan Set Data Latihan dan Ujian dalam Python?

Dalam Python, anda boleh menggunakan fungsi train_test_split daripada Scikit-learn untuk membahagikan data anda kepada set latihan dan ujian.

Contoh Kod:

from sklearn.model_selection import train_test_split

# Split the dataset: 60% training and 40% testing
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.4)
Salin selepas log masuk

7. Apakah Parameter Yang Paling Penting untuk Pelajar Berasaskan Pokok?

Beberapa parameter kritikal untuk pelajar berasaskan pokok termasuk:

  • kedalaman_maks: Kedalaman maksimum setiap pokok.
  • kadar_pembelajaran: Saiz langkah pada setiap lelaran.
  • n_estim- **n_estimator: Bilangan pokok dalam ensembel atau bilangan pusingan rangsangan.
  • subsampel: Pecahan pemerhatian untuk diambil sampel bagi setiap pokok.

Contoh Kod:

from sklearn.ensemble import RandomForestClassifier

# Setting parameters for Random Forest
model = RandomForestClassifier(max_depth=5, n_estimators=100, max_features='sqrt', random_state=42)
model.fit(X_train, y_train)
Salin selepas log masuk

8. Apakah Kaedah Penalaan Hiperparameter Biasa dalam Scikit-learn?

Dua kaedah biasa untuk penalaan hiperparameter ialah:

  • Carian Grid: Mentakrifkan grid nilai hiperparameter dan mencari gabungan optimum.
  • Carian Rawak: Menggunakan pelbagai nilai hiperparameter dan berulang secara rawak melalui gabungan.

Contoh Kod:

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV

# Grid Search
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [5, 10, 15]}
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)

# Random Search
param_dist = {'n_estimators': [50, 100, 200], 'max_depth': [5, 10, 15]}
random_search = RandomizedSearchCV(model, param_dist, n_iter=10, cv=5, random_state=42)
random_search.fit(X_train, y_train)
Salin selepas log masuk

9. Tulis Fungsi untuk Mencari Jumlah Median Curahan Hujan untuk Hari-hari Ketika Hujan.

Anda perlu mengalih keluar hari tanpa hujan dan kemudian cari median.

Contoh Kod:

def median_rainfall(df_rain):
    # Remove days with no rain
    df_rain_filtered = df_rain[df_rain['rainfall'] > 0]
    # Find the median amount of rainfall
    median_rainfall = df_rain_filtered['rainfall'].median()
    return median_rainfall
Salin selepas log masuk

10. Tulis Fungsi untuk Mengaitkan Harga Median Keju California Terpilih sebagai Ganti Nilai yang Hilang.

Anda boleh menggunakan panda untuk mengira dan mengisi nilai median.

Code Example:

def impute_median_price(df, column):
    median_price = df[column].median()
    df[column].fillna(median_price, inplace=True)
    return df
Salin selepas log masuk

11. Write a Function to Return a New List Where All None Values Are Replaced with the Most Recent Non-None Value in the List.

Code Example:

def fill_none(input_list):
    prev_value = None
    result = []
    for value in input_list:
        if value is None:
            result.append(prev_value)
        else:
            result.append(value)
            prev_value = value
    return result
Salin selepas log masuk

12. Write a Function Named grades_colors to Select Only the Rows Where the Student’s Favorite Color is Green or Red and Their Grade is Above 90.

Code Example:

def grades_colors(df_students):
    filtered_df = df_students[(df_students["grade"] > 90) & (df_students["favorite_color"].isin(["green", "red"]))]
    return filtered_df
Salin selepas log masuk

13. Calculate the t-value for the Mean of ‘var’ Against a Null Hypothesis That μ = μ_0.

Code Example:

import pandas as pd
from scipy import stats

def calculate_t_value(df, column, mu_0):
    sample_mean = df[column].mean()
    sample_std = df[column].std()
    n = len(df)

    t_value = (sample_mean - mu_0) / (sample_std / (n ** 0.5))
    return t_value

# Example usage
t_value = calculate_t_value(df, 'var', mu_0)
print(t_value)
Salin selepas log masuk

14. Build a K-Nearest Neighbors Classification Model from Scratch.

Code Example:

import numpy as np
import pandas as pd

def euclidean_distance(point1, point2):
    return np.sqrt(np.sum((point1 - point2) ** 2))

def kNN(k, data, new_point):
    distances = data.apply(lambda row: euclidean_distance(row[:-1], new_point), axis=1)
    sorted_indices = distances.sort_values().index
    top_k = data.iloc[sorted_indices[:k]]

    return top_k['label'].mode()[0]

# Example usage
data = pd.DataFrame({
    'feature1': [1, 2, 3, 4],
    'feature2': [2, 3, 4, 5],
    'label': [0, 0, 1, 1]
})

new_point = [2.5, 3.5]
k = 3

result = kNN(k, data, new_point)
print(result)
Salin selepas log masuk

15. Build a Random Forest Model from Scratch.

Note: This example uses simplified assumptions to meet the interview constraints.

Code Example:

import pandas as pd
import numpy as np

def create_tree(dataframe, new_point):
    unique_classes = dataframe['class'].unique()
    for col in dataframe.columns[:-1]:  # Exclude the 'class' column
        if new_point[col] == 1:
            sub_data = dataframe[dataframe[col] == 1]
            if len(sub_data) > 0:
                return sub_data['class'].mode()[0]
    return unique_classes[0]  # Default to the most frequent class

def random_forest(df, new_point, n_trees):
    results = []
    for _ in range
n_trees):
        tree_result = create_tree(df, new_point)
        results.append(tree_result)
    # Majority vote
    return max(set(results), key=results.count)

# Example usage
df = pd.DataFrame({
    'feature1': [0, 1, 1, 0],
    'feature2': [0, 0, 1, 1],
    'class': [0, 1, 1, 0]
})

new_point = {'feature1': 1, 'feature2': 0}
n_trees = 5

result = random_forest(df, new_point, n_trees)
print(result)
Salin selepas log masuk

16. Build a Logistic Regression Model from Scratch.

Code Example:

import pandas as pd
import numpy as np

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def logistic_regression(X, y, num_iterations, learning_rate):
    weights = np.zeros(X.shape[1])
    for i in range(num_iterations):
        z = np.dot(X, weights)
        predictions = sigmoid(z)
        errors = y - predictions
        gradient = np.dot(X.T, errors)

gradient = np.dot(X.T, errors)
        weights += learning_rate * gradient
    return weights

# Example usage
df = pd.DataFrame({
    'feature1': [0, 1, 1, 0],
    'feature2': [0, 0, 1, 1],
    'class': [0, 1, 1, 0]
})

X = df[['feature1', 'feature2']].values
y = df['class'].values
num_iterations = 1000
learning_rate = 0.01

weights = logistic_regression(X, y, num_iterations, learning_rate)
print(weights)
Salin selepas log masuk

17. Build a K-Means Algorithm from Scratch.

Code Example:

import numpy as np

def k_means(data_points, k, initial_centroids):
    centroids = initial_centroids
    while True:
        distances = np.linalg.norm(data_points[:, np.newaxis] - centroids, axis=2)
        clusters = np.argmin(distances, axis=1)
        new_centroids = np.array([data_points[clusters == i].mean(axis=0) for i in range(k)])        

        if np.all(centroids == new_centroids):
            break
        centroids = new_centroids
    return clusters

# Example usage
data_points = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]])
k = 2
initial_centroids = np.array([[1, 2], [10, 2]])

clusters = k_means(data_points, k, initial_centroids)
print(clusters)
Salin selepas log masuk

18. What is Machine Learning and How Does it Work?

Machine Learning is a field of artificial intelligence focused on building algorithms that enable computers to learn from data without explicit programming. It uses algorithms to analyze and identify patterns in data and make predictions based on those patterns.

Example Answer:

"Machine learning is a branch of artificial intelligence that involves creating algorithms capable of learning from and making predictions based on data. It works by training a model on a dataset and then using that model to make predictions on new data."

19. What are the Different Types of Machine Learning Algorithms?

There are three main types of machine learning algorithms:

  • Supervised Learning: Useslabeled data and makes predictions based on this information. Examples include linear regression and classification algorithms.

  • Unsupervised Learning: Processes unlabeled data and seeks to find patterns or relationships in it. Examples include clustering algorithms like K-means.

  • Reinforcement Learning: The algorithm learns from interacting with its environment, receiving rewards or punishments for certain actions. Examples include training AI agents in games.

Example Answer:

"There are three main types of machine learning algorithms: supervised learning, unsupervised learning, and reinforcement learning. Supervised learning uses labeled data to make predictions, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns from interactions with the environment to maximize rewards."

20. What is Cross-Validation and Why is it Important in Machine Learning?

Cross-validation is a technique to evaluate the performance of a machine learning model by dividing the dataset into two parts: a training set and a validation set. The training set trains the model, whereas the validation set evaluates it.

Importance:

  • Prevents overfitting by ensuring the model generalizes well to unseen data.
  • Provides a more accurate measure of model performance.

Example Answer:

"Cross-validation is a technique used to evaluate a machine learning model'sperformance by dividing the dataset into training and validation sets. It helps ensure the model generalizes well to new data, preventing overfitting and providing a more accurate measure of performance."

21. What is an Artificial Neural Network and How Does it Work?

Artificial Neural Networks (ANNs) are models inspired by the human brain's structure. They consist of layers of interconnected nodes (neurons) that process input data and generate output predictions.

Example Answer:

"An artificial neural network is a machine learning model inspired by the structure and function of the human brain. It comprises layers of interconnected neurons that process input data through weighted connections to make predictions."

22. What is a Decision Tree and How to Use it in Machine Learning?

Decision Trees are models for classification and regression tasks that split data into subsets based on the values of input variables to generate prediction rules.

Example Answer:

"A decision tree is a tree-like model used for classification and regression tasks. It works by recursively splitting data into subsets based on input variables, creating rules for making predictions."

23. What is the K-Nearest Neighbors (KNN) Algorithm and How Does it Work?

K-Nearest Neighbors (KNN) is a simple machine learning algorithm usedfor classification or regression tasks. It determines the k closest data points in the feature space to a given unseen data point and classifies it based on the majority class of its k nearest neighbors.

Example Answer:

"The K-Nearest Neighbors (KNN) algorithm is a machine learning technique used for classification or regression. It works by identifying the k closest data points to a given point in the feature space and classifying it based on the majority class among the k nearest neighbors."

24. What is the Support Vector Machine Algorithm and How Does it Work?

Support Vector Machines (SVM) are linear models used for binary classification and regression tasks. They find the most suitable boundary (hyperplane) that separates data into classes. Data points closest to the hyperplane, called support vectors, play a critical role in defining this boundary.

Example Answer:

"The Support Vector Machine (SVM) algorithm is a linear model used for binary classification and regression tasks. It identifies the best hyperplane that separates data into classes, relying heavily on the data points closest to the hyperplane, known as support vectors."

25. What is Regularization, and How Do You Use it in Machine Learning?

Regularization is a technique to prevent overfitting in machinelearning models by adding a penalty term to the loss function. This penalty discourages the model from learning overly complex relationships in the data.

Example Answer:

"Regularization is a technique to prevent overfitting in machine learning models by adding a penalty term to the loss function, which discourages the model from learning overly complex patterns. Common types of regularization include L1 (Lasso) and L2 (Ridge) regularization."

Code Example:

from sklearn.linear_model import Ridge

# Applying L2 Regularization (Ridge Regression)
ridge_model = Ridge(alpha=1.0)
ridge_model.fit(X_train, y_train)
Salin selepas log masuk

26. Can You Explain How Gradient Descent Works?

Gradient Descent is an optimization algorithm used to minimize a cost function in machine learning. It iteratively adjusts the parameters of the model in the direction of the negative gradient of the cost function until it reaches a minimum.

Example Answer:

"Gradient Descent is an optimization algorithm used to minimize a cost function in machine learning. It iteratively updates the model parameters in the direction of the negative gradient of the cost function, aiming to find the parameters that minimize the cost."

27. Can You Explain the Concept of Ensemble Learning

Ensemble Learning is a technique where multiple models (often called "weak learners") are combined to solve a prediction task. The combined model is generally more robust and performs better than individual models.

Example Answer:

"Ensemble learning is a machine learning technique where multiple models are combined to solve a prediction task. Common ensemble methods include bagging, boosting, and stacking. Combining the predictions of individual models can improve performance and reduce the risk of overfitting."

Example Code for Random Forest (an ensemble method):

from sklearn.ensemble import RandomForestClassifier

# Ensemble learning using Random Forest
model = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
Salin selepas log masuk

Conclusion

Preparing for a Python machine learning interview involves understanding both theoretical concepts and practical implementations. This guide has covered several essential questions and answers that frequently come up in interviews. By familiarizing yourself with these topics and practicing the provided code examples, you'll be well-equipped to handle a wide range of questions in your next machine learning interview. Good luck!

Visit MyExamCloud and see the most recent Python Certification Practice Tests. Begin creating your Study Plan today.

Atas ialah kandungan terperinci Soalan dan Jawapan Temuduga Pembelajaran Mesin Python Teratas. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:dev.to
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan