Jadual Kandungan
Apakah pembenaman perkataan?
Pembenaman perkataan pra terlatih
Apakah contoh benam perkataan yang telah dilatih?

Pembenaman Perkataan

Sep 12, 2024 pm 06:08 PM

Word Embeddings

Apakah pembenaman perkataan?

Pembenaman perkataan ialah sejenis perwakilan perkataan yang digunakan dalam pemprosesan bahasa semula jadi (NLP) dan pembelajaran mesin. Ia melibatkan pemetaan perkataan atau frasa kepada vektor nombor nyata dalam ruang vektor berterusan. Ideanya ialah perkataan dengan makna yang serupa akan mempunyai benam yang serupa, menjadikannya lebih mudah untuk algoritma memahami dan memproses bahasa.

Berikut ialah butiran lanjut tentang cara ia berfungsi:

  1. Perwakilan Vektor: Setiap perkataan diwakili sebagai vektor (senarai nombor). Sebagai contoh, perkataan "raja" mungkin diwakili oleh vektor seperti [0.3, 0.1, 0.7, ...].
  2. Kesamaan Semantik: Perkataan yang mempunyai makna yang serupa dipetakan pada titik berdekatan dalam ruang vektor. Jadi, "raja" dan "ratu" akan rapat antara satu sama lain, manakala "raja" dan "epal" akan lebih jauh.
  3. Dimensi: Vektor biasanya berdimensi tinggi (cth., 100 hingga 300 dimensi). Dimensi yang lebih tinggi boleh menangkap perhubungan semantik yang lebih halus, tetapi juga memerlukan lebih banyak data dan sumber pengiraan.
  4. Latihan: Pembenaman ini biasanya dipelajari daripada korpora teks besar menggunakan model seperti Word2Vec, GloVe (Vektor Global untuk Perwakilan Word) atau teknik yang lebih maju seperti BERT (Perwakilan Pengekod Dua Arah daripada Transformers).

Pembenaman perkataan pra terlatih

Pembenaman perkataan pra-latihan ialah vektor yang mewakili perkataan dalam ruang vektor berterusan, di mana perkataan yang serupa secara semantik dipetakan ke titik berdekatan. Ia dijana melalui latihan mengenai korpora teks besar, menangkap hubungan sintaksis dan semantik antara perkataan. Pembenaman ini berguna dalam pemprosesan bahasa semula jadi (NLP) kerana ia menyediakan perwakilan perkataan yang padat dan bermaklumat, yang boleh meningkatkan prestasi pelbagai tugasan NLP.

Apakah contoh benam perkataan yang telah dilatih?

  1. Word2Vec: Dibangunkan oleh Google, ia mewakili perkataan dalam ruang vektor dengan melatih korpora teks besar menggunakan sama ada Model Beg Perkataan Berterusan (CBOW) atau Langkau-Gram.
  2. GloVe (Vektor Global untuk Perwakilan Perkataan): Dibangunkan oleh Stanford, ia memfaktorkan matriks kejadian bersama perkataan ke dalam vektor berdimensi lebih rendah, menangkap maklumat statistik global.
  3. FastText: Dibangunkan oleh Facebook, ia dibina di atas Word2Vec dengan mewakili perkataan sebagai beg aksara n-gram, yang membantu mengendalikan perkataan di luar perbendaharaan kata dengan lebih baik.

Memvisualisasikan benam perkataan yang telah dilatih boleh membantu anda memahami perhubungan dan struktur perkataan dalam ruang benam.

Atas ialah kandungan terperinci Pembenaman Perkataan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

See all articles