Bina apl Slack yang boleh dipercayai
Membina apl Slack memang menyeronokkan! Tetapi adakah apl anda boleh dipercayai?
Semasa membina sendiri, saya melihat dua isu biasa dalam apl Slack sumber terbuka yang popular:
Banyak apl memproses acara segerak, yang boleh menyebabkan tamat masa. Slack menjangkakan respons dalam masa 3 saat, tetapi jika apl anda mencetuskan saluran paip AI/RAG, model AI mungkin mengambil masa yang lebih lama untuk menjana balasan (cth., model o1 baharu boleh mengambil masa ~10 saat untuk "berfikir"). Amalan terbaik Slack mengesyorkan acara beratur dan memprosesnya secara tidak segerak.
Banyak apl tidak mengendalikan acara pendua. Jika apl anda gagal bertindak balas, Slack mencuba semula acara tiga kali. Tanpa pengendalian yang betul, percubaan semula boleh menyebabkan respons pendua atau tidak konsisten daripada apl. Ini membawa kepada pengalaman pengguna yang buruk.
Begini cara saya menyelesaikannya dengan DBOS Python, perpustakaan perlaksanaan tahan lama ringan sumber terbuka. Saya bermula daripada tunjuk cara apl Slack berasaskan AI/RAG yang luar biasa (llamabot daripada LlamaIndex), fungsi yang diubah suai dan beranotasi ringan supaya setiap mesej masuk memulakan aliran kerja DBOS.
Kod penghantaran mesej adalah mudah:
@slackapp.message() def handle_message(request: BoltRequest) -> None: DBOS.logger.info(f"Received message: {request.body}") event_id = request.body["event_id"] # Use the unique event_id as an idempotency key to guarantee each message is processed exactly-once with SetWorkflowID(event_id): # Start the event processing workflow in the background then respond to Slack. # We can't wait for the workflow to finish because Slack expects the # endpoint to reply within 3 seconds. DBOS.start_workflow(message_workflow, request.body["event"])
Aliran kerja dimulakan di latar belakang, membolehkan apl saya bertindak balas kepada Slack dengan cepat. Aliran kerja DBOS sentiasa berjalan hingga siap sebaik sahaja dimulakan (walaupun berjalan secara tidak segerak). Oleh itu, mesej sentiasa diproses dengan pasti.
Saya menggunakan ID peristiwa mesej sebagai kunci hilang upaya aliran kerja, jadi DBOS menggunakannya untuk memastikan setiap mesej diproses tepat sekali.
Anda boleh mendapatkan lebih banyak butiran tentang aplikasi Slack berkuasa AI yang saya bina dalam repo GitHub ini: https://github.com/dbos-inc/dbos-demo-apps/tree/main/python/llamabot
README mengandungi arahan terperinci tentang cara anda boleh terus menggunakan apl ini dalam ruang kerja Slack anda.
Bagaimanakah anda biasanya membina aplikasi yang boleh dipercayai? Adakah anda mempunyai sebarang maklum balas untuk aplikasi ini? Tolong beritahu saya!
Atas ialah kandungan terperinci Bina apl Slack yang boleh dipercayai. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?

Cara Bekerja Dengan Dokumen PDF Menggunakan Python

Cara Cache Menggunakan Redis dalam Aplikasi Django

Memperkenalkan Toolkit Bahasa Alam (NLTK)

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?
