


Meneroka Pasaran Pekerjaan untuk Jurutera Perisian
pengenalan
Dalam artikel ini, kami menyelami proses mengekstrak dan menganalisis data kerja daripada LinkedIn, memanfaatkan gabungan Python, Nu shell dan ChatGPT untuk memperkemas dan meningkatkan aliran kerja kami.
Saya akan membimbing anda melalui langkah yang saya ambil untuk menjalankan penyelidikan saya, menunjukkan cara anda boleh menggunakan teknik ini untuk meneroka pasaran pekerjaan di negara yang berbeza atau dalam bidang lain. Dengan menggabungkan alat dan kaedah ini, anda boleh mengumpul dan menganalisis data untuk mendapatkan cerapan berharga tentang mana-mana pasaran kerja yang anda minati.
Gambaran keseluruhan teknologi
Ular sawa
Python dipilih kerana perpustakaan serba bolehnya, terutamanya linkedin_jobs_scraper dan openai. Pakej ini memperkemas pengikisan dan pemprosesan data kerja.
Nu Shell
Nu shell telah diuji untuk membandingkan fungsinya dengan tindanan bash tradisional. Percubaan ini bertujuan untuk meneroka potensi manfaatnya dalam mengendalikan dan memanipulasi data.
SembangGPT
ChatGPT telah digunakan untuk membantu dalam pengekstrakan ciri pekerjaan tertentu daripada data yang dikumpul, seperti tahun pengalaman, keperluan ijazah, tindanan teknologi, tahap jawatan dan tanggungjawab teras.
Pengekstrakan data
Untuk memulakan beberapa data diperlukan. LinkedIn adalah laman web pertama yang terlintas di fikiran saya dan terdapat pakej Python yang sedia untuk digunakan. Saya telah menyalin kod contoh, mengubah suainya sedikit dan bersedia untuk menggunakan skrip untuk mendapatkan fail JSON dengan senarai huraian kerja. Ini sumbernya:
import json import logging import os from threading import Lock from dotenv import load_dotenv # linkedin_jobs_scraper loads env statically # So dotenv should be loaded before imports load_dotenv() from linkedin_jobs_scraper import LinkedinScraper from linkedin_jobs_scraper.events import EventData, Events from linkedin_jobs_scraper.filters import ExperienceLevelFilters, TypeFilters from linkedin_jobs_scraper.query import Query, QueryFilters, QueryOptions CHROMEDRIVER_PATH = os.environ["CHROMEDRIVER_PATH"] RESULT_FILE_PATH = "result.json" KEYWORDS = ("Python", "PHP", "Java", "Rust") LOCATIONS = ("South Korea",) TYPE_FILTERS = (TypeFilters.FULL_TIME,) EXPERIENCE = (ExperienceLevelFilters.MID_SENIOR,) LIMIT = 500 logging.basicConfig(level=logging.INFO) log = logging.getLogger(__name__) def main(): result_lock = Lock() result = [] def on_data(data: EventData): with result_lock: result.append(data._asdict()) log.info( "[JOB]", data.title, data.company, len(data.description), ) def on_error(error): log.error("[ERROR]", error) def on_end(): log.info("Scraping finished") if not result: return with open(RESULT_FILE_PATH, "w") as f: json.dump(result, f) queries = [ Query( query=keyword, options=QueryOptions( limit=LIMIT, locations=[*LOCATIONS], filters=QueryFilters( type=[*TYPE_FILTERS], experience=[*EXPERIENCE], ), ), ) for keyword in KEYWORDS ] scraper = LinkedinScraper( chrome_executable_path=CHROMEDRIVER_PATH, headless=True, max_workers=len(queries), slow_mo=0.5, page_load_timeout=40, ) scraper.on(Events.DATA, on_data) scraper.on(Events.ERROR, on_error) scraper.on(Events.END, on_end) scraper.run(queries) if __name__ == "__main__": main()
Untuk memuat turun pemacu chrome, saya telah membuat skrip bash berikut:
#!/usr/bin/env bash stable_version=$(curl 'https://googlechromelabs.github.io/chrome-for-testing/LATEST_RELEASE_STABLE') driver_url=$(curl 'https://googlechromelabs.github.io/chrome-for-testing/known-good-versions-with-downloads.json' \ | jq -r ".versions[] | select(.version == \"${stable_version}\") | .downloads.chromedriver[0] | select(.platform == \"linux64\") | .url") wget "$driver_url" driver_zip_name=$(echo "$driver_url" | awk -F'/' '{print $NF}') unzip "$driver_zip_name" rm "$driver_zip_name"
Dan fail .env saya kelihatan seperti itu:
CHROMEDRIVER_PATH="chromedriver-linux64/chromedriver" LI_AT_COOKIE=
linkedin_jobs_scraper menyerikan kerja ke DTO berikut:
class EventData(NamedTuple): query: str = '' location: str = '' job_id: str = '' job_index: int = -1 # Only for debug link: str = '' apply_link: str = '' title: str = '' company: str = '' company_link: str = '' company_img_link: str = '' place: str = '' description: str = '' description_html: str = '' date: str = '' insights: List[str] = [] skills: List[str] = []
Contoh sampel (huraian telah digantikan dengan ... untuk kebolehbacaan yang lebih baik):
query | location | job_id | job_index | link | apply_link | title | company | company_link | company_img_link | place | description | description_html | date | insights | skills |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Python | South Korea | 3959499221 | 0 | https://www.linkedin.com/jobs/view/3959499221/?trk=flagship3_search_srp_jobs | Senior Python Software Engineer | Canonical | https://media.licdn.com/dms/image/v2/C560BAQEbIYAkAURcYw/company-logo_100_100/company-logo_100_100/0/1650566107463/canonical_logo?e=1734566400&v=beta&t=emb8cxAFwBnOGwJ8nTftd8ODTFDkC_5SQNz-Jcd8zRU | Seoul, Seoul, South Korea (Remote) | ... | ... | [Remote Full-time Mid-Senior level, Skills: Python (Programming Language), Computer Science, 8 more, See how you compare to 18 applicants. Try Premium for RSD0, , Am I a good fit for this job?, How can I best position myself for this job?, Tell me more about Canonical] | [Back-End Web Development, Computer Science, Engineering Documentation, Kubernetes, Linux, MLOps, OpenStack, Python (Programming Language), Technical Documentation, Web Services] |
Was generated with the following nu shell command:
# Replaces description of a job with elipsis def hide-description [] { update description { |row| '...' } | update description_html { |row| '...' } } cat result.json | from json | first | hide-description | to md --pretty
Last steps before analysis
We already have several ready to use features (title and skills), but I want more:
- Years of experience
- Degree
- Tech stack
- Position
- Responsibilities
So let's add them with help of ChatGPT!
import json import logging import os from dotenv import load_dotenv from linkedin_jobs_scraper.events import EventData from openai import OpenAI from tqdm import tqdm load_dotenv() client = OpenAI( api_key=os.environ["OPENAI_API_KEY"], ) with open("result.json", "rb") as f: jobs = json.load(f) parsed_descriptions = [] for job in tqdm(jobs): job = EventData(**job) chat_completion = client.chat.completions.create( model="gpt-4o-mini", messages=[ { "role": "user", "content": """ Process given IT job description. Output only raw JSON with the following fields: - Experience (amount of years or null) - Degree requirement (str if found else null) - Tech stack (array of strings) - Position (middle, senior, lead, manager, other (describe it)) - Core responsibilites (array of strings) Output will be passed directrly to the Python's `json.loads` function. So DO NOT APPLY MARKDOWN FORMATTING Example: ``` { "experience": 5, "degree": "bachelor", "stack": ["Python", "FastAPI", "Docker"], "position": "middle", "responsibilities": ["Deliver features", "break production"] } ``` Here is a job description: """ + "\n\n" + job.description_html, } ], ) content = chat_completion.choices[0].message.content try: if not content: print("Empty result from ChatGPT") continue result = json.loads(content) except json.decoder.JSONDecodeError as e: logging.error(e, chat_completion) continue result["job_id"] = job.job_id parsed_descriptions.append(result) with open("job_descriptions_analysis.json", "w") as f: json.dump(parsed_descriptions, f)
Do not forget to add OPENAI_API_KEY to the .env file
Now we can merge by job_id results with data from LinkedIn:
cat job_descriptions_analysis.json | from json | merge (cat result.json | from json) | to json | save full.json
Our data is ready to analyze!
cat full.json | from json | columns ╭────┬──────────────────╮ │ 0 │ experience │ │ 1 │ degree │ │ 2 │ stack │ │ 3 │ position │ │ 4 │ responsibilities │ │ 5 │ job_id │ │ 6 │ query │ │ 7 │ location │ │ 8 │ job_index │ │ 9 │ link │ │ 10 │ apply_link │ │ 11 │ title │ │ 12 │ company │ │ 13 │ company_link │ │ 14 │ company_img_link │ │ 15 │ place │ │ 16 │ description │ │ 17 │ description_html │ │ 18 │ date │ │ 19 │ insights │ │ 20 │ skills │ ╰────┴──────────────────╯
Analysis
For the start
let df = cat full.json | from json
Now we can see technologies frequency:
$df | get 'stack' | flatten | uniq --count | sort-by count --reverse | first 20 | to md --pretty
value | count |
---|---|
Python | 185 |
Java | 70 |
AWS | 65 |
Kubernetes | 61 |
SQL | 54 |
C++ | 46 |
Docker | 42 |
Linux | 41 |
React | 37 |
Kotlin | 34 |
JavaScript | 30 |
C | 30 |
Kafka | 28 |
TypeScript | 26 |
GCP | 25 |
Azure | 24 |
Tableau | 22 |
Hadoop | 21 |
Spark | 21 |
R | 20 |
With Python:
$df | filter-by-intersection 'stack' ['python'] | get 'stack' | flatten | where $it != 'Python' # Exclude python itself | uniq --count | sort-by count --reverse | first 10 | to md --pretty
value | count |
---|---|
Java | 44 |
AWS | 43 |
SQL | 40 |
Kubernetes | 36 |
Docker | 27 |
C++ | 26 |
Linux | 24 |
R | 20 |
GCP | 20 |
C | 18 |
Without Python:
$df | filter-by-intersection 'stack' ['python'] --invert | get 'stack' | flatten | uniq --count | sort-by count --reverse | first 10 | to md --pretty
value | count |
---|---|
React | 31 |
Java | 26 |
Kubernetes | 25 |
TypeScript | 23 |
AWS | 22 |
Kotlin | 21 |
C++ | 20 |
Linux | 17 |
Docker | 15 |
Next.js | 15 |
The most of the jobs require Python, but there are some front-end, Java and C++ jobs
Magic filter-by-intersection function is a custom one and allow filtering list values that include given set of elements:
# Filters rows by intersecting given `column` with `requirements` # Case insensitive and works only if ALL requirements exist in a `column` value # If `--invert` then works as symmetric difference def filter-by-intersection [ column: string requirements: list<string> --invert (-i) ] { let required_stack = $requirements | par-each { |el| str downcase } let required_len = if $invert { 0 } else { ($requirements | length )} $in | filter { |row| $required_len == ( $row | get $column | par-each { |el| str downcase } | where ($it in $requirements) | length ) } }
What about experience and degree requirement for each position in Python?
$df | filter-by-intersection 'stack' ['python'] | group-by 'position' --to-table | insert 'group_size' { |group| $group.items | length } | where 'group_size' >= 10 | insert 'experience' { |group| $group.items | get 'experience' | uniq --count | sort-by 'count' --reverse | update 'value' { |row| if $row.value == null { 0 } else { $row.value }} | rename --column { 'value': 'years' } | first 3 } | insert 'degree_requirement' { |group| $group.items | each { |row| $row.degree != null } | uniq --count | sort-by 'value' | rename --column { 'value': 'required' } } | sort-by 'group_size' --reverse | select 'group' 'group_size' 'experience' 'degree_requirement'
Output:
╭───┬────────┬────────────┬───────────────────────┬──────────────────────────╮ │ # │ group │ group_size │ experience │ degree_requirement │ ├───┼────────┼────────────┼───────────────────────┼──────────────────────────┤ │ 0 │ senior │ 83 │ ╭───┬───────┬───────╮ │ ╭───┬──────────┬───────╮ │ │ │ │ │ │ # │ years │ count │ │ │ # │ required │ count │ │ │ │ │ │ ├───┼───────┼───────┤ │ ├───┼──────────┼───────┤ │ │ │ │ │ │ 0 │ 5 │ 30 │ │ │ 0 │ false │ 26 │ │ │ │ │ │ │ 1 │ 0 │ 11 │ │ │ 1 │ true │ 57 │ │ │ │ │ │ │ 2 │ 7 │ 11 │ │ ╰───┴──────────┴───────╯ │ │ │ │ │ ╰───┴───────┴───────╯ │ │ │ 1 │ other │ 14 │ ╭───┬───────┬───────╮ │ ╭───┬──────────┬───────╮ │ │ │ │ │ │ # │ years │ count │ │ │ # │ required │ count │ │ │ │ │ │ ├───┼───────┼───────┤ │ ├───┼──────────┼───────┤ │ │ │ │ │ │ 0 │ 0 │ 8 │ │ │ 0 │ false │ 12 │ │ │ │ │ │ │ 1 │ 5 │ 1 │ │ │ 1 │ true │ 2 │ │ │ │ │ │ │ 2 │ 3 │ 1 │ │ ╰───┴──────────┴───────╯ │ │ │ │ │ ╰───┴───────┴───────╯ │ │ │ 2 │ lead │ 12 │ ╭───┬───────┬───────╮ │ ╭───┬──────────┬───────╮ │ │ │ │ │ │ # │ years │ count │ │ │ # │ required │ count │ │ │ │ │ │ ├───┼───────┼───────┤ │ ├───┼──────────┼───────┤ │ │ │ │ │ │ 0 │ 0 │ 5 │ │ │ 0 │ false │ 6 │ │ │ │ │ │ │ 1 │ 10 │ 4 │ │ │ 1 │ true │ 6 │ │ │ │ │ │ │ 2 │ 5 │ 1 │ │ ╰───┴──────────┴───────╯ │ │ │ │ │ ╰───┴───────┴───────╯ │ │ │ 3 │ middle │ 10 │ ╭───┬───────┬───────╮ │ ╭───┬──────────┬───────╮ │ │ │ │ │ │ # │ years │ count │ │ │ # │ required │ count │ │ │ │ │ │ ├───┼───────┼───────┤ │ ├───┼──────────┼───────┤ │ │ │ │ │ │ 0 │ 3 │ 4 │ │ │ 0 │ false │ 4 │ │ │ │ │ │ │ 1 │ 5 │ 3 │ │ │ 1 │ true │ 6 │ │ │ │ │ │ │ 2 │ 2 │ 2 │ │ ╰───┴──────────┴───────╯ │ │ │ │ │ ╰───┴───────┴───────╯ │ │ ╰───┴────────┴────────────┴───────────────────────┴──────────────────────────╯
Extraction of the most common requirements wasn't as easy as previous steps. So I've met a classification problem, and I'm going to describe my solution in the next chapter of this article.
Conclusion
We successfully extracted and analyzed job data from LinkedIn using the linkedin_jobs_scraper package. Responsibilities in the actual dataset are too sparse and need better processing to make functional classes that will help in CV creation. But the given steps already help me a lot with monitoring and applying to the jobs in half-auto mode.
Atas ialah kandungan terperinci Meneroka Pasaran Pekerjaan untuk Jurutera Perisian. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
