Rumah > pembangunan bahagian belakang > Tutorial Python > Meneroka Pasaran Pekerjaan untuk Jurutera Perisian

Meneroka Pasaran Pekerjaan untuk Jurutera Perisian

Patricia Arquette
Lepaskan: 2024-09-19 16:15:03
asal
922 orang telah melayarinya

Exploring Job Market for Software Engineers

pengenalan

Dalam artikel ini, kami menyelami proses mengekstrak dan menganalisis data kerja daripada LinkedIn, memanfaatkan gabungan Python, Nu shell dan ChatGPT untuk memperkemas dan meningkatkan aliran kerja kami.

Saya akan membimbing anda melalui langkah yang saya ambil untuk menjalankan penyelidikan saya, menunjukkan cara anda boleh menggunakan teknik ini untuk meneroka pasaran pekerjaan di negara yang berbeza atau dalam bidang lain. Dengan menggabungkan alat dan kaedah ini, anda boleh mengumpul dan menganalisis data untuk mendapatkan cerapan berharga tentang mana-mana pasaran kerja yang anda minati.

Gambaran keseluruhan teknologi

Ular sawa

Python dipilih kerana perpustakaan serba bolehnya, terutamanya linkedin_jobs_scraper dan openai. Pakej ini memperkemas pengikisan dan pemprosesan data kerja.

Nu Shell

Nu shell telah diuji untuk membandingkan fungsinya dengan tindanan bash tradisional. Percubaan ini bertujuan untuk meneroka potensi manfaatnya dalam mengendalikan dan memanipulasi data.

SembangGPT

ChatGPT telah digunakan untuk membantu dalam pengekstrakan ciri pekerjaan tertentu daripada data yang dikumpul, seperti tahun pengalaman, keperluan ijazah, tindanan teknologi, tahap jawatan dan tanggungjawab teras.

Pengekstrakan data

Untuk memulakan beberapa data diperlukan. LinkedIn adalah laman web pertama yang terlintas di fikiran saya dan terdapat pakej Python yang sedia untuk digunakan. Saya telah menyalin kod contoh, mengubah suainya sedikit dan bersedia untuk menggunakan skrip untuk mendapatkan fail JSON dengan senarai huraian kerja. Ini sumbernya:

import json
import logging
import os
from threading import Lock

from dotenv import load_dotenv

# linkedin_jobs_scraper loads env statically
# So dotenv should be loaded before imports
load_dotenv()

from linkedin_jobs_scraper import LinkedinScraper
from linkedin_jobs_scraper.events import EventData, Events
from linkedin_jobs_scraper.filters import ExperienceLevelFilters, TypeFilters
from linkedin_jobs_scraper.query import Query, QueryFilters, QueryOptions

CHROMEDRIVER_PATH = os.environ["CHROMEDRIVER_PATH"]

RESULT_FILE_PATH = "result.json"
KEYWORDS = ("Python", "PHP", "Java", "Rust")
LOCATIONS = ("South Korea",)
TYPE_FILTERS = (TypeFilters.FULL_TIME,)
EXPERIENCE = (ExperienceLevelFilters.MID_SENIOR,)
LIMIT = 500

logging.basicConfig(level=logging.INFO)
log = logging.getLogger(__name__)


def main():
    result_lock = Lock()
    result = []

    def on_data(data: EventData):
        with result_lock:
            result.append(data._asdict())

        log.info(
            "[JOB]",
            data.title,
            data.company,
            len(data.description),
        )

    def on_error(error):
        log.error("[ERROR]", error)

    def on_end():
        log.info("Scraping finished")

        if not result:
            return

        with open(RESULT_FILE_PATH, "w") as f:
            json.dump(result, f)

    queries = [
        Query(
            query=keyword,
            options=QueryOptions(
                limit=LIMIT,
                locations=[*LOCATIONS],
                filters=QueryFilters(
                    type=[*TYPE_FILTERS],
                    experience=[*EXPERIENCE],
                ),
            ),
        )
        for keyword in KEYWORDS
    ]

    scraper = LinkedinScraper(
        chrome_executable_path=CHROMEDRIVER_PATH,
        headless=True,
        max_workers=len(queries),
        slow_mo=0.5,
        page_load_timeout=40,
    )

    scraper.on(Events.DATA, on_data)
    scraper.on(Events.ERROR, on_error)
    scraper.on(Events.END, on_end)

    scraper.run(queries)


if __name__ == "__main__":
    main()
Salin selepas log masuk

Untuk memuat turun pemacu chrome, saya telah membuat skrip bash berikut:

#!/usr/bin/env bash
stable_version=$(curl 'https://googlechromelabs.github.io/chrome-for-testing/LATEST_RELEASE_STABLE')
driver_url=$(curl 'https://googlechromelabs.github.io/chrome-for-testing/known-good-versions-with-downloads.json' \
    | jq -r ".versions[] | select(.version == \"${stable_version}\") | .downloads.chromedriver[0] | select(.platform == \"linux64\") | .url")
wget "$driver_url"
driver_zip_name=$(echo "$driver_url" | awk -F'/' '{print $NF}')
unzip "$driver_zip_name"
rm "$driver_zip_name"
Salin selepas log masuk

Dan fail .env saya kelihatan seperti itu:

CHROMEDRIVER_PATH="chromedriver-linux64/chromedriver"
LI_AT_COOKIE=
Salin selepas log masuk

linkedin_jobs_scraper menyerikan kerja ke DTO berikut:

class EventData(NamedTuple):
    query: str = ''
    location: str = ''
    job_id: str = ''
    job_index: int = -1  # Only for debug
    link: str = ''
    apply_link: str = ''
    title: str = ''
    company: str = ''
    company_link: str = ''
    company_img_link: str = ''
    place: str = ''
    description: str = ''
    description_html: str = ''
    date: str = ''
    insights: List[str] = []
    skills: List[str] = []
Salin selepas log masuk

Contoh sampel (huraian telah digantikan dengan ... untuk kebolehbacaan yang lebih baik):

query location job_id job_index link apply_link title company company_link company_img_link place description description_html date insights skills
Python South Korea 3959499221 0 https://www.linkedin.com/jobs/view/3959499221/?trk=flagship3_search_srp_jobs Senior Python Software Engineer Canonical https://media.licdn.com/dms/image/v2/C560BAQEbIYAkAURcYw/company-logo_100_100/company-logo_100_100/0/1650566107463/canonical_logo?e=1734566400&v=beta&t=emb8cxAFwBnOGwJ8nTftd8ODTFDkC_5SQNz-Jcd8zRU Seoul, Seoul, South Korea (Remote) ... ... [Remote Full-time Mid-Senior level, Skills: Python (Programming Language), Computer Science, 8 more, See how you compare to 18 applicants. Try Premium for RSD0, , Am I a good fit for this job?, How can I best position myself for this job?, Tell me more about Canonical] [Back-End Web Development, Computer Science, Engineering Documentation, Kubernetes, Linux, MLOps, OpenStack, Python (Programming Language), Technical Documentation, Web Services]

Was generated with the following nu shell command:

# Replaces description of a job with elipsis
def hide-description [] {
    update description { |row| '...' } 
    | update description_html { |row| '...' } 
}

cat result.json 
| from  json 
| first 
| hide-description
| to md --pretty 
Salin selepas log masuk

Last steps before analysis

We already have several ready to use features (title and skills), but I want more:

  • Years of experience
  • Degree
  • Tech stack
  • Position
  • Responsibilities

So let's add them with help of ChatGPT!

import json
import logging
import os

from dotenv import load_dotenv
from linkedin_jobs_scraper.events import EventData
from openai import OpenAI
from tqdm import tqdm

load_dotenv()

client = OpenAI(
    api_key=os.environ["OPENAI_API_KEY"],
)

with open("result.json", "rb") as f:
    jobs = json.load(f)

parsed_descriptions = []

for job in tqdm(jobs):
    job = EventData(**job)
    chat_completion = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "user",
                "content": """
                    Process given IT job description. 
                    Output only raw JSON with the following fields:
                        - Experience (amount of years or null)
                        - Degree requirement (str if found else null)
                        - Tech stack (array of strings)
                        - Position (middle, senior, lead, manager, other (describe it))
                        - Core responsibilites (array of strings)

                    Output will be passed directrly to the
                    Python's `json.loads` function. So DO NOT APPLY MARKDOWN FORMATTING
                    Example:
                    ```


                    {
                        "experience": 5, 
                        "degree": "bachelor", 
                        "stack": ["Python", "FastAPI", "Docker"], 
                        "position": "middle",
                        "responsibilities": ["Deliver features", "break production"]
                    }


                    ```

                    Here is a job description:
                """
                + "\n\n"
                + job.description_html,
            }
        ],
    )

    content = chat_completion.choices[0].message.content
    try:
        if not content:
            print("Empty result from ChatGPT")
            continue
        result = json.loads(content)
    except json.decoder.JSONDecodeError as e:
        logging.error(e, chat_completion)
        continue

    result["job_id"] = job.job_id
    parsed_descriptions.append(result)

with open("job_descriptions_analysis.json", "w") as f:
    json.dump(parsed_descriptions, f)
Salin selepas log masuk

Do not forget to add OPENAI_API_KEY to the .env file

Now we can merge by job_id results with data from LinkedIn:

cat job_descriptions_analysis.json 
| from json 
| merge (cat result.json | from json)
| to json
| save full.json
Salin selepas log masuk

Our data is ready to analyze!

cat full.json | from json | columns
╭────┬──────────────────╮
│  0 │ experience       │
│  1 │ degree           │
│  2 │ stack            │
│  3 │ position         │
│  4 │ responsibilities │
│  5 │ job_id           │
│  6 │ query            │
│  7 │ location         │
│  8 │ job_index        │
│  9 │ link             │
│ 10 │ apply_link       │
│ 11 │ title            │
│ 12 │ company          │
│ 13 │ company_link     │
│ 14 │ company_img_link │
│ 15 │ place            │
│ 16 │ description      │
│ 17 │ description_html │
│ 18 │ date             │
│ 19 │ insights         │
│ 20 │ skills           │
╰────┴──────────────────╯
Salin selepas log masuk

Analysis

For the start

let df = cat full.json | from json
Salin selepas log masuk

Now we can see technologies frequency:

$df
| get 'stack' 
| flatten 
| uniq --count 
| sort-by count --reverse 
| first 20 
| to md --pretty
Salin selepas log masuk
value count
Python 185
Java 70
AWS 65
Kubernetes 61
SQL 54
C++ 46
Docker 42
Linux 41
React 37
Kotlin 34
JavaScript 30
C 30
Kafka 28
TypeScript 26
GCP 25
Azure 24
Tableau 22
Hadoop 21
Spark 21
R 20

With Python:

$df
| filter-by-intersection 'stack' ['python']
| get 'stack' 
| flatten 
| where $it != 'Python' # Exclude python itself
| uniq --count 
| sort-by count --reverse 
| first 10
| to md --pretty
Salin selepas log masuk
value count
Java 44
AWS 43
SQL 40
Kubernetes 36
Docker 27
C++ 26
Linux 24
R 20
GCP 20
C 18

Without Python:

$df
| filter-by-intersection 'stack' ['python'] --invert
| get 'stack' 
| flatten 
| uniq --count 
| sort-by count --reverse 
| first 10
| to md --pretty
Salin selepas log masuk
value count
React 31
Java 26
Kubernetes 25
TypeScript 23
AWS 22
Kotlin 21
C++ 20
Linux 17
Docker 15
Next.js 15

The most of the jobs require Python, but there are some front-end, Java and C++ jobs

Magic filter-by-intersection function is a custom one and allow filtering list values that include given set of elements:

# Filters rows by intersecting given `column` with `requirements`
# Case insensitive and works only if ALL requirements exist in a `column` value
# If `--invert` then works as symmetric difference
def filter-by-intersection [
    column: string
    requirements: list<string>
   --invert (-i)
] {
    let required_stack = $requirements | par-each { |el| str downcase }
    let required_len = if $invert { 0 } else { ($requirements | length )}
    $in
    | filter { |row| 
        $required_len == (
            $row 
            | get $column 
            | par-each { |el| str downcase } 
            | where ($it in $requirements) 
            | length
        )
    }
}
Salin selepas log masuk

What about experience and degree requirement for each position in Python?

$df
| filter-by-intersection 'stack' ['python'] 
| group-by 'position' --to-table
| insert 'group_size' { |group| $group.items | length } 
| where 'group_size' >= 10
| insert 'experience' { |group| 
    $group.items 
    | get 'experience'
    | uniq --count  
    | sort-by 'count' --reverse 
    | update 'value' { |row| if $row.value == null { 0 } else { $row.value }}
    | rename --column { 'value': 'years' }
    | first 3 
} 
| insert 'degree_requirement' { |group| 
    $group.items 
    | each { |row| $row.degree != null } 
    | uniq --count 
    | sort-by 'value'
    | rename --column { 'value': 'required' }
}
| sort-by 'group_size' --reverse 
| select 'group' 'group_size' 'experience' 'degree_requirement'
Salin selepas log masuk

Output:

╭───┬────────┬────────────┬───────────────────────┬──────────────────────────╮
│ # │ group  │ group_size │      experience       │    degree_requirement    │
├───┼────────┼────────────┼───────────────────────┼──────────────────────────┤
│ 0 │ senior │         83 │ ╭───┬───────┬───────╮ │ ╭───┬──────────┬───────╮ │
│   │        │            │ │ # │ years │ count │ │ │ # │ required │ count │ │
│   │        │            │ ├───┼───────┼───────┤ │ ├───┼──────────┼───────┤ │
│   │        │            │ │ 0 │     5 │    30 │ │ │ 0 │ false    │    26 │ │
│   │        │            │ │ 1 │     0 │    11 │ │ │ 1 │ true     │    57 │ │
│   │        │            │ │ 2 │     7 │    11 │ │ ╰───┴──────────┴───────╯ │
│   │        │            │ ╰───┴───────┴───────╯ │                          │
│ 1 │ other  │         14 │ ╭───┬───────┬───────╮ │ ╭───┬──────────┬───────╮ │
│   │        │            │ │ # │ years │ count │ │ │ # │ required │ count │ │
│   │        │            │ ├───┼───────┼───────┤ │ ├───┼──────────┼───────┤ │
│   │        │            │ │ 0 │     0 │     8 │ │ │ 0 │ false    │    12 │ │
│   │        │            │ │ 1 │     5 │     1 │ │ │ 1 │ true     │     2 │ │
│   │        │            │ │ 2 │     3 │     1 │ │ ╰───┴──────────┴───────╯ │
│   │        │            │ ╰───┴───────┴───────╯ │                          │
│ 2 │ lead   │         12 │ ╭───┬───────┬───────╮ │ ╭───┬──────────┬───────╮ │
│   │        │            │ │ # │ years │ count │ │ │ # │ required │ count │ │
│   │        │            │ ├───┼───────┼───────┤ │ ├───┼──────────┼───────┤ │
│   │        │            │ │ 0 │     0 │     5 │ │ │ 0 │ false    │     6 │ │
│   │        │            │ │ 1 │    10 │     4 │ │ │ 1 │ true     │     6 │ │
│   │        │            │ │ 2 │     5 │     1 │ │ ╰───┴──────────┴───────╯ │
│   │        │            │ ╰───┴───────┴───────╯ │                          │
│ 3 │ middle │         10 │ ╭───┬───────┬───────╮ │ ╭───┬──────────┬───────╮ │
│   │        │            │ │ # │ years │ count │ │ │ # │ required │ count │ │
│   │        │            │ ├───┼───────┼───────┤ │ ├───┼──────────┼───────┤ │
│   │        │            │ │ 0 │     3 │     4 │ │ │ 0 │ false    │     4 │ │
│   │        │            │ │ 1 │     5 │     3 │ │ │ 1 │ true     │     6 │ │
│   │        │            │ │ 2 │     2 │     2 │ │ ╰───┴──────────┴───────╯ │
│   │        │            │ ╰───┴───────┴───────╯ │                          │
╰───┴────────┴────────────┴───────────────────────┴──────────────────────────╯
Salin selepas log masuk

Extraction of the most common requirements wasn't as easy as previous steps. So I've met a classification problem, and I'm going to describe my solution in the next chapter of this article.

Conclusion

We successfully extracted and analyzed job data from LinkedIn using the linkedin_jobs_scraper package. Responsibilities in the actual dataset are too sparse and need better processing to make functional classes that will help in CV creation. But the given steps already help me a lot with monitoring and applying to the jobs in half-auto mode.

Atas ialah kandungan terperinci Meneroka Pasaran Pekerjaan untuk Jurutera Perisian. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:dev.to
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel terbaru oleh pengarang
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan