


Bermula dengan Pembelajaran Mesin dalam JavaScript: Panduan Pemula dengan TensorFlow.js
Pembelajaran mesin (ML) telah mengubah dunia pembangunan perisian dengan pantas. Sehingga baru-baru ini, Python adalah bahasa yang dominan dalam ruang ML, terima kasih kepada perpustakaan seperti TensorFlow dan PyTorch. Tetapi dengan kemunculan TensorFlow.js, pembangun JavaScript kini boleh menyelami dunia pembelajaran mesin yang menarik, menggunakan sintaks biasa untuk membina dan melatih model terus dalam penyemak imbas atau pada Node.js.
Dalam catatan blog ini, kami akan meneroka cara anda boleh bermula dengan pembelajaran mesin menggunakan JavaScript. Kami akan melihat contoh membina dan melatih model mudah menggunakan TensorFlow.js.
Mengapa TensorFlow.js?
TensorFlow.js ialah perpustakaan sumber terbuka yang membolehkan anda mentakrif, melatih dan menjalankan model pembelajaran mesin sepenuhnya dalam JavaScript. Ia berjalan dalam penyemak imbas dan pada Node.js, menjadikannya sangat serba boleh untuk pelbagai aplikasi ML.
Berikut ialah beberapa sebab mengapa TensorFlow.js menarik:
- Latihan masa nyata: Anda boleh menjalankan model terus dalam penyemak imbas, menawarkan interaktiviti masa nyata.
- Merentas platform: Kod yang sama boleh dijalankan pada kedua-dua pelayan dan persekitaran klien.
- Pecutan perkakasan: Ia menggunakan WebGL untuk pecutan GPU, yang mempercepatkan pengiraan.
Jom lihat cara untuk bermula!
1. Menyediakan TensorFlow.js
Sebelum menyelami kod, anda perlu memasang TensorFlow.js. Anda boleh memasukkannya dalam projek anda melalui
Persediaan Penyemak Imbas
Untuk menggunakan TensorFlow.js dalam penyemak imbas, cuma masukkan
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
Persediaan Node.js
Untuk persekitaran Node.js, anda boleh memasangnya menggunakan npm:
npm install @tensorflow/tfjs
2. Membina Model Rangkaian Neural Mudah
Mari kita cipta rangkaian neural ringkas yang meramalkan output fungsi linear asas, y = 2x - 1. Kami akan menggunakan TensorFlow.js untuk mencipta dan melatih model ini.
Langkah 1: Tentukan Model
Kita akan mulakan dengan mentakrifkan model berjujukan (timbunan linear lapisan) dengan satu lapisan padat:
// Import TensorFlow.js import * as tf from '@tensorflow/tfjs'; // Create a simple sequential model const model = tf.sequential(); // Add a single dense layer with 1 unit (neuron) model.add(tf.layers.dense({units: 1, inputShape: [1]}));
Di sini, kami telah mencipta model dengan satu lapisan padat. Lapisan mempunyai satu neuron (unit: 1), dan ia menjangkakan satu ciri input (InputShape: [1]).
Langkah 2: Susun Model
Seterusnya, kami menyusun model dengan menyatakan fungsi pengoptimum dan kehilangan:
// Compile the model model.compile({ optimizer: 'sgd', // Stochastic Gradient Descent loss: 'meanSquaredError' // Loss function for regression });
Kami menggunakan pengoptimum Stochastic Gradient Descent (SGD), yang berkesan untuk model kecil. Fungsi kehilangan, meanSquaredError, sesuai untuk tugas regresi seperti ini.
Langkah 3: Sediakan Data Latihan
Kini kami akan mencipta beberapa data latihan untuk fungsi y = 2x - 1. Dalam TensorFlow.js, data disimpan dalam tensor (tatasusunan berbilang dimensi). Begini cara kami boleh menjana beberapa data latihan:
// Generate some synthetic data for training const xs = tf.tensor2d([0, 1, 2, 3, 4], [5, 1]); // Inputs (x values) const ys = tf.tensor2d([1, 3, 5, 7, 9], [5, 1]); // Outputs (y values)
Dalam kes ini, kami telah mencipta tensor xs dengan nilai input (0, 1, 2, 3, 4) dan tensor output yang sepadan ys dengan nilai yang dikira menggunakan y = 2x - 1.
Langkah 4: Latih Model
Kini, kami boleh melatih model pada data kami:
// Train the model model.fit(xs, ys, {epochs: 500}).then(() => { // Once training is complete, use the model to make predictions model.predict(tf.tensor2d([5], [1, 1])).print(); // Output will be close to 2*5 - 1 = 9 });
Di sini, kami melatih model untuk 500 zaman (lelaran ke atas data latihan). Selepas latihan, kami menggunakan model untuk meramalkan output bagi nilai input 5, yang sepatutnya mengembalikan nilai hampir 9 (y = 2*5 - 1 = 9).
3. Menjalankan Model dalam Pelayar
Untuk menjalankan model ini dalam penyemak imbas, anda memerlukan fail HTML yang termasuk perpustakaan TensorFlow.js dan kod JavaScript anda:
TensorFlow.js Example <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>Simple Neural Network with TensorFlow.js
Dan dalam fail app.js anda, anda boleh memasukkan kod pembinaan model dan latihan dari atas.
Atas ialah kandungan terperinci Bermula dengan Pembelajaran Mesin dalam JavaScript: Panduan Pemula dengan TensorFlow.js. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Enjin JavaScript yang berbeza mempunyai kesan yang berbeza apabila menguraikan dan melaksanakan kod JavaScript, kerana prinsip pelaksanaan dan strategi pengoptimuman setiap enjin berbeza. 1. Analisis leksikal: Menukar kod sumber ke dalam unit leksikal. 2. Analisis Tatabahasa: Menjana pokok sintaks abstrak. 3. Pengoptimuman dan Penyusunan: Menjana kod mesin melalui pengkompil JIT. 4. Jalankan: Jalankan kod mesin. Enjin V8 mengoptimumkan melalui kompilasi segera dan kelas tersembunyi, Spidermonkey menggunakan sistem kesimpulan jenis, menghasilkan prestasi prestasi yang berbeza pada kod yang sama.

Python lebih sesuai untuk pemula, dengan lengkung pembelajaran yang lancar dan sintaks ringkas; JavaScript sesuai untuk pembangunan front-end, dengan lengkung pembelajaran yang curam dan sintaks yang fleksibel. 1. Sintaks Python adalah intuitif dan sesuai untuk sains data dan pembangunan back-end. 2. JavaScript adalah fleksibel dan digunakan secara meluas dalam pengaturcaraan depan dan pelayan.

Peralihan dari C/C ke JavaScript memerlukan menyesuaikan diri dengan menaip dinamik, pengumpulan sampah dan pengaturcaraan asynchronous. 1) C/C adalah bahasa yang ditaip secara statik yang memerlukan pengurusan memori manual, manakala JavaScript ditaip secara dinamik dan pengumpulan sampah diproses secara automatik. 2) C/C perlu dikumpulkan ke dalam kod mesin, manakala JavaScript adalah bahasa yang ditafsirkan. 3) JavaScript memperkenalkan konsep seperti penutupan, rantaian prototaip dan janji, yang meningkatkan keupayaan pengaturcaraan fleksibiliti dan asynchronous.

Penggunaan utama JavaScript dalam pembangunan web termasuk interaksi klien, pengesahan bentuk dan komunikasi tak segerak. 1) kemas kini kandungan dinamik dan interaksi pengguna melalui operasi DOM; 2) pengesahan pelanggan dijalankan sebelum pengguna mengemukakan data untuk meningkatkan pengalaman pengguna; 3) Komunikasi yang tidak bersesuaian dengan pelayan dicapai melalui teknologi Ajax.

Aplikasi JavaScript di dunia nyata termasuk pembangunan depan dan back-end. 1) Memaparkan aplikasi front-end dengan membina aplikasi senarai TODO, yang melibatkan operasi DOM dan pemprosesan acara. 2) Membina Restfulapi melalui Node.js dan menyatakan untuk menunjukkan aplikasi back-end.

Memahami bagaimana enjin JavaScript berfungsi secara dalaman adalah penting kepada pemaju kerana ia membantu menulis kod yang lebih cekap dan memahami kesesakan prestasi dan strategi pengoptimuman. 1) aliran kerja enjin termasuk tiga peringkat: parsing, penyusun dan pelaksanaan; 2) Semasa proses pelaksanaan, enjin akan melakukan pengoptimuman dinamik, seperti cache dalam talian dan kelas tersembunyi; 3) Amalan terbaik termasuk mengelakkan pembolehubah global, mengoptimumkan gelung, menggunakan const dan membiarkan, dan mengelakkan penggunaan penutupan yang berlebihan.

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Kedua -dua pilihan Python dan JavaScript dalam persekitaran pembangunan adalah penting. 1) Persekitaran pembangunan Python termasuk Pycharm, Jupyternotebook dan Anaconda, yang sesuai untuk sains data dan prototaip cepat. 2) Persekitaran pembangunan JavaScript termasuk node.js, vscode dan webpack, yang sesuai untuk pembangunan front-end dan back-end. Memilih alat yang betul mengikut keperluan projek dapat meningkatkan kecekapan pembangunan dan kadar kejayaan projek.
