


Diving Deep: Penyelesaian Rekursif untuk Palindrom dan Blok Bersebelahan
Dalam artikel ini, kami akan menangani dua tugasan daripada Cabaran Mingguan Perl #288: mencari palindrom yang paling hampir dan menentukan saiz bongkah bersebelahan terbesar dalam matriks. Kedua-dua penyelesaian akan dilaksanakan secara rekursif dalam Perl dan Go.
Jadual Kandungan
- Palindrom Terhampir
- Blok Bersambung
- Kesimpulan
Palindrom terdekat
Tugas pertama ialah mencari palindrom terdekat yang tidak termasuk dirinya.
Palindrom terdekat ditakrifkan sebagai palindrom yang meminimumkan perbezaan mutlak antara dua integer.
Jika terdapat berbilang calon, yang terkecil hendaklah dikembalikan.
Penerangan Tugas
Input: Rentetan, $str, yang mewakili integer.
Output: Palindrom terdekat sebagai rentetan.
Contoh
Input: "123"
Output: "121"Input: "2"
Output: "1"
Terdapat dua palindrom terdekat: "1" dan "3". Oleh itu, kami mengembalikan "1" terkecil.Input: "1400"
Output: "1441"Input: "1001"
Output: "999"
Penyelesaian
Pelaksanaan Perl
Dalam pelaksanaan ini, kami menggunakan pendekatan rekursif untuk mencari palindrom terdekat yang tidak sama dengan nombor asal. Fungsi rekursif meneroka kedua-dua sempadan bawah dan atas di sekeliling nombor asal:
- Ia menyemak sama ada calon semasa (bawah dan atas) adalah palindrom yang sah (dan tidak sama dengan yang asal).
- Jika kedua-dua calon tidak sah, fungsi tersebut mengurangkan secara rekursif calon bawah dan menambah calon atas sehingga ia menemui palindrom yang sah.
Strategi rekursif ini mengecilkan ruang carian secara berkesan, memastikan kami mengenal pasti palindrom terdekat sambil mematuhi kekangan masalah.
sub is_palindrome { my ($num) = @_; return $num eq reverse($num); } sub find_closest { my ($lower, $upper, $original) = @_; return $lower if is_palindrome($lower) && $lower != $original; return $upper if is_palindrome($upper) && $upper != $original; return find_closest($lower - 1, $upper + 1, $original) if $lower > 0; return $upper + 1; } sub closest_palindrome { my ($str) = @_; my $num = int($str); return find_closest($num - 1, $num + 1, $num); }
Perlaksanaan Go
Pelaksanaan Go mengikut strategi rekursif yang serupa. Ia juga menyemak calon di sekeliling nombor asal, menggunakan rekursi untuk melaraskan sempadan sehingga palindrom yang sah ditemui.
package main import ( "strconv" ) func isPalindrome(num int) bool { reversed := 0 original := num for num > 0 { digit := num % 10 reversed = reversed*10 + digit num /= 10 } return original == reversed } func findClosest(lower, upper, original int) string { switch { case isPalindrome(lower) && lower != original: return strconv.Itoa(lower) case isPalindrome(upper) && upper != original: return strconv.Itoa(upper) case lower > 0: return findClosest(lower-1, upper+1, original) default: return strconv.Itoa(upper + 1) } } func closestPalindrome(str string) string { num, _ := strconv.Atoi(str) return findClosest(num-1, num+1, num) }
Hier ist die erweiterte Definisi für den Blok Bersebelahan:
Blok Bersebelahan
Tugas kedua ialah menentukan saiz blok bersebelahan terbesar dalam matriks tertentu, di mana semua sel mengandungi sama ada x atau o.
Blok bersebelahan terdiri daripada elemen yang mengandungi simbol yang sama yang berkongsi tepi (bukan hanya sudut) dengan elemen lain dalam blok, mewujudkan kawasan bersambung.
Penerangan Tugas
Input: Matriks segi empat tepat yang mengandungi x dan o.
Output: Saiz blok bersebelahan terbesar.
Contoh
-
Input:
[ ['x', 'x', 'x', 'x', 'o'], ['x', 'o', 'o', 'o', 'o'], ['x', 'o', 'o', 'o', 'o'], ['x', 'x', 'x', 'o', 'o'], ]
Salin selepas log masuk
Output: 11
Terdapat satu blok 9 sel bersebelahan yang mengandungi x dan satu blok 11 sel bersebelahan mengandungi o.
-
Input:
[ ['x', 'x', 'x', 'x', 'x'], ['x', 'o', 'o', 'o', 'o'], ['x', 'x', 'x', 'x', 'o'], ['x', 'o', 'o', 'o', 'o'], ]
Salin selepas log masuk
Output: 11
Terdapat satu blok 11 sel bersebelahan yang mengandungi x dan satu blok 9 sel bersebelahan mengandungi o.
-
Input:
[ ['x', 'x', 'x', 'o', 'o'], ['o', 'o', 'o', 'x', 'x'], ['o', 'x', 'x', 'o', 'o'], ['o', 'o', 'o', 'x', 'x'], ]
Salin selepas log masuk
Output: 7
Terdapat satu blok 7 sel bersebelahan yang mengandungi o, dua blok 2 sel o yang lain, tiga blok 2 sel x dan satu blok 3 sel x.
Penyelesaian
Pelaksanaan Perl
Dalam pelaksanaan ini, kami menggunakan pendekatan carian mendalam pertama (DFS) rekursif untuk menentukan saiz blok bersebelahan terbesar dalam matriks. Fungsi utama memulakan matriks yang dilawati untuk menjejaki sel yang telah diterokai. Ia berulang melalui setiap sel, menggunakan fungsi DFS rekursif apabila ia menemui sel yang tidak dilawati.
Fungsi DFS meneroka semua empat arah yang mungkin (atas, bawah, kiri, kanan) dari sel semasa. Ia mengira saiz blok bersebelahan dengan memanggil dirinya secara rekursif pada sel jiran yang berkongsi simbol yang sama dan belum pernah dilawati. Kaedah rekursif ini mengagregatkan saiz blok dengan berkesan sambil memastikan setiap sel hanya dikira sekali.
sub largest_contiguous_block { my ($matrix) = @_; my $rows = @$matrix; my $cols = @{$matrix->[0]}; my @visited = map { [(0) x $cols] } 1..$rows; my $max_size = 0; for my $r (0 .. $rows - 1) { for my $c (0 .. $cols - 1) { my $symbol = $matrix->[$r][$c]; my $size = dfs($matrix, \@visited, $r, $c, $symbol); $max_size = $size if $size > $max_size; } } return $max_size; } sub dfs { my ($matrix, $visited, $row, $col, $symbol) = @_; return 0 if $row < 0 || $row >= @$matrix || $col < 0 || $col >= @{$matrix->[0]} || $visited->[$row][$col] || $matrix->[$row][$col] ne $symbol; $visited->[$row][$col] = 1; my $count = 1; $count += dfs($matrix, $visited, $row + 1, $col, $symbol); $count += dfs($matrix, $visited, $row - 1, $col, $symbol); $count += dfs($matrix, $visited, $row, $col + 1, $symbol); $count += dfs($matrix, $visited, $row, $col - 1, $symbol); return $count; }
Perlaksanaan Go
Pelaksanaan Go mencerminkan strategi DFS rekursif ini. Ia juga merentasi matriks dan menggunakan rekursi untuk meneroka sel bersebelahan dengan simbol yang sama.
package main func largestContiguousBlock(matrix [][]rune) int { rows := len(matrix) if rows == 0 { return 0 } cols := len(matrix[0]) visited := make([][]bool, rows) for i := range visited { visited[i] = make([]bool, cols) } maxSize := 0 for r := 0; r < rows; r++ { for c := 0; c < cols; c++ { symbol := matrix[r][c] size := dfs(matrix, visited, r, c, symbol) if size > maxSize { maxSize = size } } } return maxSize } func dfs(matrix [][]rune, visited [][]bool, row, col int, symbol rune) int { if row < 0 || row >= len(matrix) || col < 0 || col >= len(matrix[0]) || visited[row][col] || matrix[row][col] != symbol { return 0 } visited[row][col] = true count := 1 count += dfs(matrix, visited, row+1, col, symbol) count += dfs(matrix, visited, row-1, col, symbol) count += dfs(matrix, visited, row, col+1, symbol) count += dfs(matrix, visited, row, col-1, symbol) return count }
Conclusion
In this article, we explored two intriguing challenges from the Perl Weekly Challenge #288: finding the closest palindrome and determining the size of the largest contiguous block in a matrix.
For the first task, both the Perl and Go implementations effectively utilized recursion to navigate around the original number, ensuring the closest palindrome was found efficiently.
In the second task, the recursive depth-first search approach in both languages allowed for a thorough exploration of the matrix, resulting in an accurate count of the largest contiguous block of identical symbols.
These challenges highlight the versatility of recursion as a powerful tool in solving algorithmic problems, showcasing its effectiveness in both Perl and Go. If you're interested in further exploration or have any questions, feel free to reach out!
You can find the complete code, including tests, on GitHub.
Atas ialah kandungan terperinci Diving Deep: Penyelesaian Rekursif untuk Palindrom dan Blok Bersebelahan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Pergi bahasa berfungsi dengan baik dalam membina sistem yang cekap dan berskala. Kelebihannya termasuk: 1. Prestasi Tinggi: Disusun ke dalam Kod Mesin, Kelajuan Berjalan Cepat; 2. Pengaturcaraan serentak: Memudahkan multitasking melalui goroutine dan saluran; 3. Kesederhanaan: sintaks ringkas, mengurangkan kos pembelajaran dan penyelenggaraan; 4. Cross-Platform: Menyokong kompilasi silang platform, penggunaan mudah.

Golang lebih baik daripada C dalam kesesuaian, manakala C lebih baik daripada Golang dalam kelajuan mentah. 1) Golang mencapai kesesuaian yang cekap melalui goroutine dan saluran, yang sesuai untuk mengendalikan sejumlah besar tugas serentak. 2) C Melalui pengoptimuman pengkompil dan perpustakaan standard, ia menyediakan prestasi tinggi yang dekat dengan perkakasan, sesuai untuk aplikasi yang memerlukan pengoptimuman yang melampau.

Golang dan Python masing -masing mempunyai kelebihan mereka sendiri: Golang sesuai untuk prestasi tinggi dan pengaturcaraan serentak, sementara Python sesuai untuk sains data dan pembangunan web. Golang terkenal dengan model keserasiannya dan prestasi yang cekap, sementara Python terkenal dengan sintaks ringkas dan ekosistem perpustakaan yang kaya.

Golang lebih baik daripada Python dari segi prestasi dan skalabiliti. 1) Ciri-ciri jenis kompilasi Golang dan model konkurensi yang cekap menjadikannya berfungsi dengan baik dalam senario konvensional yang tinggi. 2) Python, sebagai bahasa yang ditafsirkan, melaksanakan perlahan -lahan, tetapi dapat mengoptimumkan prestasi melalui alat seperti Cython.

C lebih sesuai untuk senario di mana kawalan langsung sumber perkakasan dan pengoptimuman prestasi tinggi diperlukan, sementara Golang lebih sesuai untuk senario di mana pembangunan pesat dan pemprosesan konkurensi tinggi diperlukan. Kelebihan 1.C terletak pada ciri-ciri perkakasan dan keupayaan pengoptimuman yang tinggi, yang sesuai untuk keperluan berprestasi tinggi seperti pembangunan permainan. 2. Kelebihan Golang terletak pada sintaks ringkas dan sokongan konvensional semulajadi, yang sesuai untuk pembangunan perkhidmatan konvensional yang tinggi.

Golang dan C masing-masing mempunyai kelebihan sendiri dalam pertandingan prestasi: 1) Golang sesuai untuk kesesuaian tinggi dan perkembangan pesat, dan 2) C menyediakan prestasi yang lebih tinggi dan kawalan halus. Pemilihan harus berdasarkan keperluan projek dan tumpukan teknologi pasukan.

Goimpactsdevelopmentpositivielythroughspeed, efficiency, andsimplicity.1) Speed: goCompilesquicklyandrunsefficiently, idealforlargeproject.2) Kecekapan: ITSComprehensivestandardlibraryraryrarexternaldependencies, enhingdevelyficiency.

Perbezaan prestasi antara Golang dan C terutamanya ditunjukkan dalam pengurusan ingatan, pengoptimuman kompilasi dan kecekapan runtime. 1) Mekanisme pengumpulan sampah Golang adalah mudah tetapi boleh menjejaskan prestasi, 2) Pengurusan memori manual C dan pengoptimuman pengkompil lebih cekap dalam pengkomputeran rekursif.
