


Analisis Data Cuaca Komprehensif Menggunakan Python: Suhu, Aliran Hujan dan Visualisasi
-
케냐의 여러 도시에 대한 기상 데이터 분석 및 예측
- 소개
- 데이터세트 개요
- 탐색적 데이터 분석
- 주요 날씨 특징 시각화
- 기상분석
- 도시별 강수량
- 월평균기온
- 월평균 강우량
- 날씨변수의 상관관계
- 사례 연구: 도시별 동향
- 결론
케냐의 여러 도시에 대한 기상 데이터 분석 및 예측
소개
이 글에서는 Python을 사용하여 날씨 패턴을 분석하는 방법을 안내하겠습니다. 온도 추세 식별부터 강수량 시각화까지 이 단계별 가이드는 날씨 분석을 위한 데이터 과학 기술 사용에 관심이 있는 모든 사람에게 적합합니다. 실용적인 통찰력을 얻기 위해 코드, 데이터 조작 및 시각화를 탐구하겠습니다.
케냐에서 날씨는 다양한 분야, 특히 농업, 관광, 야외 활동에서 중요한 역할을 합니다. 농부, 기업, 이벤트 기획자는 결정을 내리기 위해 정확한 날씨 정보가 필요합니다. 그러나 날씨 패턴은 지역마다 크게 다를 수 있으며 현재 예측 시스템이 항상 현지화된 통찰력을 제공하는 것은 아닙니다.
이 프로젝트의 목적은 OpenWeatherMap API 및 Weather API에서 케냐 전역의 다양한 지역에 대한 실시간 날씨 데이터를 수집하는 것입니다. 이 데이터는 데이터베이스에 저장되고 Python을 사용하여 분석되어 다음에 대한 통찰력을 얻습니다.-
- 온도 추세
- 강우 패턴 - 습도 및 바람 조건
이 프로젝트에서는 케냐 여러 도시의 날씨 정보가 포함된 데이터 세트를 분석합니다. 데이터 세트에는 온도, 습도, 기압, 풍속, 가시성, 강우량 등 다양한 요인을 포함하여 3,000개 이상의 기상 관측 데이터가 포함되어 있습니다. 이러한 통찰력을 사용하여 우리는 농업, 관광, 심지어 경영과 같이 날씨에 민감한 분야의 의사 결정에 도움이 될 수 있는 정확한 지역별 일기 예보를 제공하는 것을 목표로 합니다.
데이터 세트 개요
데이터세트는 여러 열을 사용하여 구성되었습니다.
- Datetime - 날씨가 기록된 시간을 나타내는 타임스탬프입니다.
- 도시 및 국가 - 기상관측 위치
- 위도 및 경도 - 해당 위치의 지리적 좌표
- 온도(섭씨) - 기록된 온도입니다.
- 습도(%) - 공기 중 습도의 비율입니다.
- 압력(hPa) - 헥토파스칼 단위의 대기압입니다.
- 풍속(m/s) - 당시의 바람의 속도
- 비(mm) - 밀리미터 단위로 측정한 강수량
- 구름(%) - 구름이 덮이는 비율입니다.
- 날씨 상태 및 날씨 설명 - 날씨에 대한 일반 및 자세한 설명(예: '구름', '흩어진 구름')
데이터베이스의 데이터는 이렇게 구성되어 있습니다.
탐색적 데이터 분석
분석의 첫 번째 단계에는 데이터에 대한 기본적인 탐색이 포함되었습니다.
_ 데이터 차원 - 데이터세트에는 3,000개의 행과 14개의 열이 포함되어 있습니다.
_ Null 값 - 누락된 데이터가 최소화되어 추가 분석을 위해 데이터 세트를 신뢰할 수 있습니다.
print(df1[['temperature_celsius', 'humidity_pct', 'pressure_hpa', 'wind_speed_ms', 'rain', 'clouds']].describe())
위 코드를 사용하여 숫자 열에 대한 요약 통계를 계산하여 온도, 습도, 기압, 강수량 및 구름의 범위, 평균 및 확산에 대한 통찰력을 제공했습니다.
주요 날씨 특징 시각화
날씨 특징을 더 명확하게 이해하기 위해 다양한 분포를 그렸습니다.
온도 분포
sns.displot(df1['temperature_celsius'], bins=50, kde=True) plt.title('Temperature Distribution') plt.xlabel('Temperature (Celsius)')
이 분포는 도시 전체의 일반적인 기온 분포를 나타냅니다. KDE 선 도표는 온도 확률 분포를 원활하게 추정합니다.
강우량 분포
sns.displot(df1['rain'], bins=50, kde=True) plt.title('Rainfall Distribution') plt.xlabel('Rainfall (mm/h)')
이 코드는 케냐 도시 전체의 강수량 분포를 분석합니다.
습도, 기압, 풍속
습도(%), 기압(hPa) 및 풍속(m/s)에 대한 유사한 분포도는 각각 다음과 같은 유용한 통찰력을 제공합니다. 데이터세트 전반에 걸쳐 이러한 매개변수의 변형이 발생합니다.
기상상태 분석
날씨 조건(예: '구름', '비')을 계산하고 원형 차트를 사용하여 시각화하여 비례 분포를 표시했습니다.
condition_counts = df1['weather_condition'].value_counts() plt.figure(figsize=(8,8)) plt.pie(condition_counts, labels=condition_counts.index, autopct='%1.1f%%', pctdistance=1.1, labeldistance=0.6, startangle=140) plt.title('Distribution of Weather Conditions') plt.axis('equal') plt.show()
City-wise Rainfall
One of the key analysis was the total rainfall by city:
rainfall_by_city = df1.groupby('city')['rain'].sum().sort_values() plt.figure(figsize=(12,12)) rainfall_by_city.plot(kind='barh', color='skyblue') plt.title('Total Rainfall by City') plt.xlabel('Total Rainfall (mm)') plt.ylabel('City') plt.tight_layout() plt.show()
This bar plot highlighted which cities received the most rain over the observed period, with a few outliers showing significant rainfall compared to others.
Average Monthly Temperature
avg_temp_by_month.plot(kind='line') plt.title('Average Monthly Temperature')
The line chart revealed temperature fluctuations across different months, showing seasonal changes.
Average Monthly Rainfall
monthly_rain.plot(kind='line') plt.title('Average Monthly Rainfall')
Similarly, rainfall was analyzed to observe how it varied month-to-month.
We also visualized the data using heatmaps for a more intuitive understanding of monthly temperature and rainfall.
Here are the heatmaps for the average monthly temperature and rainfall
Correlation Between Weather Variables
Next, I calculated the correlation matrix between key weather variables:
correlation_matrix = df1[['temperature_celsius', 'humidity_pct', 'pressure_hpa', 'wind_speed_ms', 'rain', 'clouds']].corr() correlation_matrix sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') plt.title('Correlation Between Weather Variables')
This heatmap allowed us to identify relationships between variables. For example, we observed a negative correlation between temperature and humidity, as expected.
Case Study: City Specific Trends
I have focused on individual cities such as Mombasa and Nyeri, to explore their unique weather patterns:
Mombasa Temperature Trends
plt.plot(monthly_avg_temp_msa) plt.title('Temperature Trends in Mombasa Over Time')
This city showed significant variation in temperature across the year.
Nyeri Rainfall Trends
plt.plot(monthly_avg_rain_nyr) plt.title('Rainfall Trends in Nyeri Over Time')
The rainfall data for Nyeri displayed a clear seasonal pattern, with rainfall peaking during certain months.
Conclusion
This analysis provides a comprehensive overview of the weather conditions in major cities, highlighting the temperature, rainfall, and other key weather variables. By using visualizations like histograms, line charts, pie charts, and heatmaps, we were able to extract meaningful insights into the data. Further analysis could involve comparing these trends with historical weather patterns or exploring predictive modeling to forecast future weather trends.
You can find the Jupyter Notebook with the full code for this analysis in my GitHub repository).
Atas ialah kandungan terperinci Analisis Data Cuaca Komprehensif Menggunakan Python: Suhu, Aliran Hujan dan Visualisasi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
