


Bagaimana untuk Menambah Lajur Menggunakan Pandas Transform dalam GroupBy DataFrames?
Tambah Lajur pada GroupBy DataFrame Menggunakan Pandas Transform
Apabila bekerja dengan operasi kumpulan dalam panda, selalunya berguna untuk menambah lajur baharu pada bingkai data yang terhasil. Satu kaedah untuk mencapai ini ialah menggunakan fungsi .map(), seperti yang ditunjukkan dalam contoh. Walau bagaimanapun, pendekatan alternatif dan lebih mudah ialah menggunakan fungsi .transform().
.transform() membolehkan kami menggunakan fungsi pada setiap kumpulan dalam rangka data dan mengembalikan Siri dengan hasilnya. Siri yang dikembalikan akan mempunyai indeks yang sejajar dengan bingkai data asal.
Untuk menggambarkan, mari kita mulakan dengan bingkai data yang disediakan:
df = pd.DataFrame({'c': [1, 1, 1, 2, 2, 2, 2], 'type': ['m', 'n', 'o', 'm', 'm', 'n', 'n']})
Matlamat kami adalah untuk mengira nilai jenis bagi setiap c dan tambah lajur dengan saiz c.
g = df.groupby('c')['type'].value_counts().reset_index(name='t')
Kod ini mengira nilai untuk setiap kumpulan dan mencipta lajur baharu bernama t.
Untuk menambah lajur saiz menggunakan .transform( ), kita boleh melakukan perkara berikut:
g['size'] = df.groupby('c')['type'].transform('size')
.transform('size') menggunakan fungsi saiz untuk setiap kumpulan, yang mengembalikan saiz setiap kumpulan. Siri yang terhasil diselaraskan dengan indeks rangka data asal, membolehkan kami menambahkannya sebagai lajur baharu pada g.
Output akan menjadi bingkai data dengan lajur tambahan bernama saiz:
c type t size 0 1 m 1 3 1 1 n 1 3 2 1 o 1 3 3 2 m 2 4 4 2 n 2 4
Menggunakan .transform() menyediakan cara yang lebih ringkas dan mudah untuk menambah lajur kembali ke kerangka data asal daripada pengagregatan kumpulan.
Atas ialah kandungan terperinci Bagaimana untuk Menambah Lajur Menggunakan Pandas Transform dalam GroupBy DataFrames?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.
