


Bagaimana untuk Menambah Lajur dengan Kiraan Kumpulan pada Bingkai Data Berkumpulan dalam Panda?
Cara Menambah Lajur pada Bingkai Data Berkumpulan dalam Panda
Dalam analisis data, selalunya perlu untuk mengumpulkan data dan melakukan pengiraan pada setiap kumpulan. Pandas menawarkan cara yang mudah untuk melakukan ini melalui fungsi kumpulannya. Satu tugas biasa ialah mengira nilai lajur dalam setiap kumpulan dan menambah lajur yang mengandungi kiraan ini pada bingkai data.
Pertimbangkan kerangka data df:
<code class="python">df = pd.DataFrame({'c':[1,1,1,2,2,2,2],'type':['m','n','o','m','m','n','n']})</code>
Untuk mengira nilai bagi taip untuk setiap c, kita boleh menggunakan fungsi value_counts pada bingkai data terkumpul:
<code class="python">g = df.groupby('c')['type'].value_counts().reset_index(name='t')</code>
Ini mencipta bingkai data baharu g dengan kiraan kumpulan. Untuk menambah lajur pada g dengan saiz setiap kumpulan, kita boleh menggunakan fungsi transformasi:
<code class="python">g['size'] = df.groupby('c')['type'].transform('size')</code>
transform menggunakan fungsi untuk setiap kumpulan dalam kerangka data asal dan mengembalikan Siri dengan indeksnya sejajar dengan kerangka data asal. Dalam kes ini, kami menggunakan fungsi saiz untuk mengira bilangan elemen dalam setiap kumpulan dan menetapkannya kepada saiz lajur baharu. Bingkai data g yang terhasil kini akan kelihatan seperti ini:
<code class="python"> c type t size 0 1 m 1 3 1 1 n 1 3 2 1 o 1 3 3 2 m 2 4 4 2 n 2 4</code>
Ini menunjukkan cara mudah untuk menambah lajur baharu pada bingkai data berkumpulan berdasarkan hasil pengagregatan mengikut kumpulan.
Atas ialah kandungan terperinci Bagaimana untuk Menambah Lajur dengan Kiraan Kumpulan pada Bingkai Data Berkumpulan dalam Panda?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.
