


Bagaimana untuk Menggabungkan Bingkai Data Berkumpulan Dengan Berkesan Menggunakan df.groupby().transform()?
Menggabungkan Bingkai Data Kumpulan dengan df.groupby().transform()
Apabila berurusan dengan bingkai data panda, selalunya perlu melakukan operasi pada subset data, seperti mengumpulkan nilai dan mengira statistik. Walau bagaimanapun, ia boleh menyusahkan untuk menggabungkan hasil operasi ini kembali ke dalam rangka data asal.
Untuk menangani cabaran ini, pertimbangkan senario berikut:
Masalah: Anda mempunyai kerangka data dengan dua lajur, 'c' dan 'jenis'. Matlamat anda adalah untuk mengira nilai 'jenis' bagi setiap 'c' dan menambah lajur pada bingkai data dengan saiz 'c'.
Pendekatan 1 (Menggunakan Peta):
Satu pendekatan ialah menggunakan fungsi map(), yang menggunakan fungsi pada setiap nilai dalam Siri. Dalam kes ini, anda boleh memetakan saiz 'c' kepada nilai 'c' yang sepadan dalam bingkai data:
<code class="python">g = df.groupby('c')['type'].value_counts().reset_index(name='t') a = df.groupby('c').size().reset_index(name='size') a.index = a['c'] g['size'] = g['c'].map(a['size'])</code>
Pendekatan ini berfungsi tetapi melibatkan berbilang langkah dan penjajaran indeks manual.
Pendekatan 2 (Menggunakan Transformasi):
Penyelesaian yang lebih mudah ialah menggunakan fungsi transform() panda, yang menggunakan fungsi pada setiap baris bingkai data, mengembalikan Siri yang sejajar dengan indeks asal. Anda boleh menggunakan transformasi untuk menambah saiz 'c' terus pada bingkai data:
<code class="python">g = df.groupby('c')['type'].value_counts().reset_index(name='t') g['size'] = df.groupby('c')['type'].transform('size')</code>
Pendekatan ini menghapuskan keperluan untuk pengiraan saiz dan penjajaran indeks yang berasingan, menghasilkan penyelesaian yang lebih ringkas dan cekap.
Atas ialah kandungan terperinci Bagaimana untuk Menggabungkan Bingkai Data Berkumpulan Dengan Berkesan Menggunakan df.groupby().transform()?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.
