


Bagaimana untuk Menapis Objek Data Panda dengan Cekap Menggunakan Pengindeksan Boolean?
Penapisan Cekap Bingkai Data dan Siri Pandas Menggunakan Pengindeksan Boolean
Dalam senario analisis data, penggunaan berbilang penapis untuk mengecilkan hasil selalunya penting. Artikel ini bertujuan untuk menangani pendekatan yang cekap untuk merantai berbilang operasi perbandingan pada objek data Pandas.
Cabarannya
Matlamatnya adalah untuk memproses kamus pengendali hubungan dan menerapkannya secara tambahan pada Panda yang diberikan Siri atau DataFrame, menghasilkan set data yang ditapis. Operasi ini memerlukan meminimumkan penyalinan data yang tidak diperlukan, terutamanya apabila berurusan dengan set data yang besar.
Penyelesaian: Pengindeksan Boolean
Panda menyediakan mekanisme yang sangat cekap untuk menapis data menggunakan pengindeksan boolean. Pengindeksan Boolean melibatkan mewujudkan keadaan logik dan kemudian mengindeks data menggunakan syarat ini. Pertimbangkan contoh berikut:
<code class="python">df.loc[df['col1'] >= 1, 'col1']</code>
Barisan kod ini memilih semua baris dalam DataFrame df di mana nilai dalam lajur 'col1' lebih besar daripada atau sama dengan 1. Hasilnya ialah objek Siri baharu yang mengandungi nilai yang ditapis.
Untuk menggunakan berbilang penapis, kami boleh menggabungkan keadaan boolean menggunakan pengendali logik seperti & (dan) dan | (atau). Contohnya:
<code class="python">df[(df['col1'] >= 1) & (df['col1'] <= 1)]
Operasi ini menapis baris dengan 'col1' kedua-duanya lebih besar daripada atau sama dengan 1 dan kurang daripada atau sama dengan 1.
Fungsi Pembantu
Untuk memudahkan proses menggunakan berbilang penapis, kami boleh mencipta fungsi pembantu:
<code class="python">def b(x, col, op, n): return op(x[col], n) def f(x, *b): return x[(np.logical_and(*b))]
Fungsi b mencipta keadaan boolean untuk lajur dan pengendali tertentu, manakala f menggunakan berbilang syarat boolean pada DataFrame atau Siri.
Contoh Penggunaan
Untuk menggunakan fungsi ini, kami boleh menyediakan kamus kriteria penapis:
<code class="python">filters = {'>=': [1], '<=': [1]}</code>
<code class="python">b1 = b(df, 'col1', ge, 1) b2 = b(df, 'col1', le, 1) filtered_df = f(df, b1, b2)</code>
Kod ini menggunakan penapis pada 'col1' lajur dalam DataFrame df dan mengembalikan DataFrame baharu dengan hasil yang ditapis.
Fungsi Dipertingkat
Pandas 0.13 memperkenalkan kaedah pertanyaan, yang menawarkan cara mudah untuk menggunakan penapis menggunakan ungkapan rentetan. Untuk pengecam lajur yang sah, kod berikut menjadi mungkin:
<code class="python">df.query('col1 <= 1 & 1 <= col1')</code>
Baris ini mencapai penapisan yang sama seperti contoh kami sebelum ini menggunakan sintaks yang lebih ringkas.
Dengan menggunakan pengindeksan boolean dan fungsi pembantu, kami boleh menggunakan berbilang penapis dengan cekap pada bingkai data dan siri Pandas. Pendekatan ini meminimumkan penyalinan data dan meningkatkan prestasi, terutamanya apabila bekerja dengan set data yang besar.
Atas ialah kandungan terperinci Bagaimana untuk Menapis Objek Data Panda dengan Cekap Menggunakan Pengindeksan Boolean?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
