


Belajar Kepintaran Buatan dan Pembelajaran Mesin dengan Python!
Helo, komuniti!
Jika anda ingin tahu tentang Kecerdasan Buatan (AI) dan Pembelajaran Mesin (ML), blog CodePulse saya menawarkan panduan komprehensif yang merangkumi segala-galanya daripada konsep asas kepada aplikasi praktikal.
Inilah perkara yang boleh anda jangkakan:
Modul Pembelajaran Pengukuhan: Dalam modul ini, kami meneroka cara mencipta ejen yang belajar untuk memaksimumkan ganjaran. Menggunakan OpenAI Gym, anda akan melihat contoh praktikal tentang cara ejen berinteraksi dengan persekitaran dan meningkatkan prestasinya dari semasa ke semasa.
Membina Rangkaian Neural: Langkah seterusnya ialah memahami rangkaian saraf, yang penting untuk banyak aplikasi AI. Dengan Keras, anda akan belajar cara membina rangkaian yang boleh mengecam digit tulisan tangan daripada set data MNIST, termasuk penyediaan data, latihan model dan penilaian.
Teknik Pengesahan dan Penambahbaikan: Akhir sekali, kami meliputi pengesahan silang dan penalaan hiperparameter. Ketahui cara teknik ini boleh membantu meningkatkan ketepatan model anda, menggunakan metrik seperti ketepatan, ingat kembali dan matriks kekeliruan untuk menilai prestasinya.
Ini bukan sekadar panduan teori! Ia penuh dengan contoh praktikal dan petua berharga yang akan memudahkan perjalanan anda dalam mempelajari AI dan ML.
Jika anda sudah bersedia untuk mendalami bidang teknologi yang menarik ini, jangan buang masa! Lihat blog penuh di sini dan mulakan perjalanan anda ke AI dan ML dengan Python!
Atas ialah kandungan terperinci Belajar Kepintaran Buatan dan Pembelajaran Mesin dengan Python!. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Python menyediakan pelbagai cara untuk memuat turun fail dari Internet, yang boleh dimuat turun melalui HTTP menggunakan pakej Urllib atau Perpustakaan Permintaan. Tutorial ini akan menerangkan cara menggunakan perpustakaan ini untuk memuat turun fail dari URL dari Python. Permintaan Perpustakaan Permintaan adalah salah satu perpustakaan yang paling popular di Python. Ia membolehkan menghantar permintaan HTTP/1.1 tanpa menambahkan rentetan pertanyaan secara manual ke URL atau pengekodan data pos. Perpustakaan Permintaan boleh melaksanakan banyak fungsi, termasuk: Tambah data borang Tambah fail berbilang bahagian Akses data tindak balas python Buat permintaan kepala

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Berurusan dengan imej yang bising adalah masalah biasa, terutamanya dengan telefon bimbit atau foto kamera resolusi rendah. Tutorial ini meneroka teknik penapisan imej di Python menggunakan OpenCV untuk menangani isu ini. Penapisan Imej: Alat yang berkuasa Penapis Imej

Fail PDF adalah popular untuk keserasian silang platform mereka, dengan kandungan dan susun atur yang konsisten merentasi sistem operasi, peranti membaca dan perisian. Walau bagaimanapun, tidak seperti Python memproses fail teks biasa, fail PDF adalah fail binari dengan struktur yang lebih kompleks dan mengandungi unsur -unsur seperti fon, warna, dan imej. Mujurlah, tidak sukar untuk memproses fail PDF dengan modul luaran Python. Artikel ini akan menggunakan modul PYPDF2 untuk menunjukkan cara membuka fail PDF, mencetak halaman, dan mengekstrak teks. Untuk penciptaan dan penyuntingan fail PDF, sila rujuk tutorial lain dari saya. Penyediaan Inti terletak pada menggunakan modul luaran PYPDF2. Pertama, pasangkannya menggunakan PIP: Pip adalah p

Tutorial ini menunjukkan cara memanfaatkan caching redis untuk meningkatkan prestasi aplikasi python, khususnya dalam rangka kerja Django. Kami akan merangkumi pemasangan Redis, konfigurasi Django, dan perbandingan prestasi untuk menyerlahkan bene

Pemprosesan bahasa semulajadi (NLP) adalah pemprosesan bahasa manusia secara automatik atau separa automatik. NLP berkait rapat dengan linguistik dan mempunyai hubungan dengan penyelidikan dalam sains kognitif, psikologi, fisiologi, dan matematik. Dalam sains komputer

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan
