


Bagaimana untuk Melaksanakan Paralelisme dalam Python: Melepaskan Kuasa Berbilang Teras?
Soalan: Memeluk Paralelisme dalam Python
Dalam C , OpenMP menyediakan sokongan teguh untuk pengaturcaraan selari. Walau bagaimanapun, Python kekurangan alat mudah ini. Bagaimanakah kita mencapai keselarian dalam program Python, terutamanya dalam senario di mana fungsi bebas memerlukan penyelarasan?
Pertimbangkan struktur kod berikut:
<code class="python">solve1(A) solve2(B)</code>
Di mana solve1 dan solve2 ialah fungsi bebas. Matlamatnya adalah untuk melaksanakan kod ini secara selari, meminimumkan masa pelaksanaan.
Mari kita terokai coretan kod yang disediakan:
<code class="python">def solve(Q, G, n): i = 0 tol = 10 ** -4 while i < 1000: inneropt, partition, x = setinner(Q, G, n) outeropt = setouter(Q, G, n) if (outeropt - inneropt) / (1 + abs(outeropt) + abs(inneropt)) < tol: break node1 = partition[0] node2 = partition[1] G = updateGraph(G, node1, node2) if i == 999: print "Maximum iteration reaches" print inneropt</code>
Kami menyasarkan untuk menyelaraskan fungsi setinner dan setouter.
Jawapan: Melancarkan Kuasa Selari dengan Modul Berbilang Pemprosesan
Modul berbilang pemprosesan menawarkan penyelesaian yang berkuasa untuk pengaturcaraan selari dalam Python. Ia membolehkan kami menghasilkan berbilang proses yang boleh melaksanakan tugas secara serentak, menggunakan kuasa pemprosesan berbilang teras CPU.
Untuk kod yang disediakan, kumpulan pemprosesan boleh digunakan. Begini caranya:
<code class="python">from multiprocessing import Pool pool = Pool() result1 = pool.apply_async(solve1, [A]) # evaluate "solve1(A)" asynchronously result2 = pool.apply_async(solve2, [B]) # evaluate "solve2(B)" asynchronously answer1 = result1.get(timeout=10) answer2 = result2.get(timeout=10)</code>
Coretan kod ini mencipta kumpulan proses yang akan melaksanakan fungsi solve1 dan solve2 secara tidak segerak. Setiap teras CPU boleh melaksanakan satu proses secara serentak, dengan berkesan mengurangkan masa pelaksanaan.
Cara alternatif untuk menyelaraskan tugasan ialah dengan menggunakan fungsi peta:
<code class="python">args = [A, B] results = pool.map(solve1, args)</code>
Pendekatan ini menggunakan fungsi solve1 untuk setiap elemen dalam senarai args secara selari.
Walau bagaimanapun, adalah penting untuk ambil perhatian bahawa urutan tidak boleh digunakan untuk pengaturcaraan selari dalam Python. Ini kerana GIL (Global Interpreter Lock) menghalang berbilang benang daripada melaksanakan kod bait Python secara serentak, pada asasnya menafikan sebarang potensi manfaat selari.
Atas ialah kandungan terperinci Bagaimana untuk Melaksanakan Paralelisme dalam Python: Melepaskan Kuasa Berbilang Teras?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
