Jadual Kandungan
Pengaturcaraan Selari dalam Python: Panduan Komprehensif
Rumah pembangunan bahagian belakang Tutorial Python Apakah Pendekatan Terbaik untuk Melaraskan Fungsi Sawa Bebas Secara Asynchronous?

Apakah Pendekatan Terbaik untuk Melaraskan Fungsi Sawa Bebas Secara Asynchronous?

Oct 23, 2024 am 01:09 AM

What's the Best Approach to Parallelize Independent Python Functions Asynchronously?

Pengaturcaraan Selari dalam Python: Panduan Komprehensif

Untuk C , OpenMP menyediakan mekanisme yang mudah untuk menyelaraskan kod. Walau bagaimanapun, pengguna Python menghadapi cabaran apabila mencari keupayaan yang serupa. Panduan ini bertujuan untuk menangani cabaran ini dengan mengemukakan penyelesaian yang disesuaikan dengan Python, membolehkan pengaturcara memanfaatkan kuasa pemprosesan selari untuk mengoptimumkan kod mereka.

Secara khusus, kami akan meneroka senario yang melibatkan dua fungsi bebas, solve1(A ) dan solve2(B), yang perlu dilaksanakan secara selari dan bukannya secara berurutan. Kod sampel yang disediakan menyerlahkan fungsi ini sebagai:

<code class="python">def solve(Q, G, n):
    ...
    setinneropt, partition, x = setinner(Q, G, n)
    ...
    if ...
        node1 = partition[0]
        node2 = partition[1]
    ...</code>
Salin selepas log masuk

Fungsi utama di sini ialah setinner dan setout, mewakili tugas bebas yang kami sasarkan untuk selarikan.

Pendekatan yang disyorkan menggunakan modul berbilang pemprosesan Python, terutamanya kolam pemprosesannya. Kumpulan ini menggunakan proses pekerja generik, memperuntukkan satu pekerja bagi setiap teras CPU pada mesin anda. Akibatnya, berbilang proses pekerja secara serentak boleh melaksanakan tugas selari yang diberikan.

Untuk senario khusus kami, kod tersebut akan kelihatan seperti ini:

<code class="python">from multiprocessing import Pool
pool = Pool()
result1 = pool.apply_async(setinner, [Q, G, n])  # Evaluate "setinner(Q, G, n)" asynchronously
result2 = pool.apply_async(setouter, [Q, G, n])  # Evaluate "setouter(Q, G, n)" asynchronously
answer1 = result1.get(timeout=10)
answer2 = result2.get(timeout=10)</code>
Salin selepas log masuk

Dengan mencipta kumpulan pemprosesan, kami pada asasnya mewakilkan pelaksanaan fungsi bebas ini untuk memisahkan proses, dengan berkesan mencapai pemprosesan selari.

Adalah penting untuk ambil perhatian bahawa menggunakan benang untuk pengaturcaraan selari dalam Python tidak digalakkan kerana Global Interpreter Lock (GIL), yang menghalang operasi serentak pada objek Python. Oleh itu, proses, bukannya benang, disyorkan untuk usaha pengaturcaraan selari Python.

Atas ialah kandungan terperinci Apakah Pendekatan Terbaik untuk Melaraskan Fungsi Sawa Bebas Secara Asynchronous?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1672
14
Tutorial PHP
1276
29
Tutorial C#
1256
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

See all articles