Rumah > pembangunan bahagian belakang > Tutorial Python > Bagaimana untuk Berkongsi Data Baca Sahaja yang Besar dengan Cekap dalam Pemprosesan Berbilang Python?

Bagaimana untuk Berkongsi Data Baca Sahaja yang Besar dengan Cekap dalam Pemprosesan Berbilang Python?

Linda Hamilton
Lepaskan: 2024-10-24 18:45:50
asal
791 orang telah melayarinya

How to Share Large Readonly Data Efficiently in Python Multiprocessing?

Mengekalkan Data Baca Sahaja Dikongsi dalam Berbilang pemprosesan

Soalan:

Dalam persekitaran berbilang pemprosesan Python, bagaimana untuk memastikan tatasusunan baca sahaja yang bersaiz besar (cth., 3 Gb) dikongsi antara berbilang proses tanpa membuat salinan?

Jawapan:

Menggunakan keupayaan memori kongsi yang disediakan oleh modul berbilang pemprosesan bersama NumPy membolehkan perkongsian data yang cekap antara proses.

<code class="python">import multiprocessing
import ctypes
import numpy as np

shared_array_base = multiprocessing.Array(ctypes.c_double, 10*10)
shared_array = np.ctypeslib.as_array(shared_array_base.get_obj())
shared_array = shared_array.reshape(10, 10)</code>
Salin selepas log masuk

Pendekatan ini memanfaatkan fakta bahawa Linux menggunakan semantik salin atas tulis untuk fork(), memastikan data hanya diduplikasi apabila diubahsuai. Akibatnya, walaupun tanpa menggunakan pemproses berbilang secara eksplisit. Tatasusunan, data dikongsi secara berkesan antara proses melainkan diubah.

<code class="python"># Parallel processing
def my_func(i, def_param=shared_array):
    shared_array[i,:] = i

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=4)
    pool.map(my_func, range(10))

    print(shared_array)</code>
Salin selepas log masuk

Kod ini secara serentak mengubah suai tatasusunan yang dikongsi dan menunjukkan perkongsian data yang berjaya antara berbilang proses:

[[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 2.  2.  2.  2.  2.  2.  2.  2.  2.  2.]
 [ 3.  3.  3.  3.  3.  3.  3.  3.  3.  3.]
 [ 4.  4.  4.  4.  4.  4.  4.  4.  4.  4.]
 [ 5.  5.  5.  5.  5.  5.  5.  5.  5.  5.]
 [ 6.  6.  6.  6.  6.  6.  6.  6.  6.  6.]
 [ 7.  7.  7.  7.  7.  7.  7.  7.  7.  7.]
 [ 8.  8.  8.  8.  8.  8.  8.  8.  8.  8.]
 [ 9.  9.  9.  9.  9.  9.  9.  9.  9.  9.]]
Salin selepas log masuk

Dengan memanfaatkan memori yang dikongsi dan semantik salin atas-tulis, pendekatan ini menyediakan penyelesaian yang cekap untuk berkongsi sejumlah besar data baca sahaja antara proses dalam persekitaran berbilang pemprosesan.

Atas ialah kandungan terperinci Bagaimana untuk Berkongsi Data Baca Sahaja yang Besar dengan Cekap dalam Pemprosesan Berbilang Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:php
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel terbaru oleh pengarang
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan