


Cara Menggabungkan Bingkai Data Pandas Berdasarkan Lajur Dikongsi: Panduan untuk `join()` dan `merge()`
Menggabungkan Bingkai Data Panda pada Lajur Dikongsi: Panduan Komprehensif
Pengenalan
Menggabungkan data daripada berbilang bingkai data ialah tugas biasa dalam analisis data . Pandas menawarkan beberapa kaedah untuk mencapai ini, termasuk fungsi join() dan merge(). Artikel ini menunjukkan cara menggunakan fungsi ini untuk menggabungkan dua bingkai data yang berkongsi lajur biasa.
Menggunakan Fungsi join()
Fungsi join() melakukan cantuman dalaman secara lalai, bermakna ia hanya mengekalkan baris yang mempunyai nilai yang sepadan dalam lajur gabungan. Dalam contoh yang diberikan, fungsi join() tidak boleh digunakan kerana restaurant_ids_dataframe dan restaurant_review_frame mempunyai nama lajur yang bertindih (bintang dan jenis), seperti yang ditunjukkan oleh mesej ralat:
Exception: columns overlap: Index([business_id, stars, type], dtype=object)
Menggunakan Fungsi merge()
Fungsi merge() menawarkan fleksibiliti yang lebih besar untuk menggabungkan bingkai data. Untuk melakukan gabungan luar, yang mengekalkan semua baris daripada kedua-dua bingkai data, gunakan parameter how='outer':
<code class="python">import pandas as pd pd.merge(restaurant_ids_dataframe, restaurant_review_frame, on='business_id', how='outer')</code>
Secara lalai, merge() menggunakan akhiran ('_x', '_y' ) untuk membezakan antara lajur dengan nama pendua. Untuk menyesuaikan akhiran, hantar nilai kepada parameter akhiran, seperti yang ditunjukkan di bawah:
<code class="python">pd.merge(restaurant_ids_dataframe, restaurant_review_frame, on='business_id', how='outer', suffixes=('_restaurant_id', '_restaurant_review'))</code>
Kesimpulan
Kedua-dua fungsi join() dan merge() boleh digunakan untuk menggabungkan bingkai data pada lajur biasa. Memahami perbezaan antara fungsi ini adalah penting untuk mencapai gelagat gabungan yang diingini. Fungsi merge() menawarkan lebih banyak fleksibiliti, termasuk keupayaan untuk melakukan cantuman luar dan menyesuaikan sufiks lajur. Dengan menguasai teknik ini, anda boleh menggabungkan bingkai data dengan berkesan untuk mengekstrak cerapan bermakna daripada set data anda.
Atas ialah kandungan terperinci Cara Menggabungkan Bingkai Data Pandas Berdasarkan Lajur Dikongsi: Panduan untuk `join()` dan `merge()`. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
