


Bagaimana untuk Menambah Berbilang Lajur dengan Cekap pada Pandas DataFrame Serentak?
Menambah Berbilang Lajur pada Pandas DataFrame Serentak
Dalam manipulasi data Pandas, menambahkan berbilang lajur baharu pada DataFrame dengan cekap boleh menjadi tugas yang memerlukan penyelesaian yang elegan. Walaupun pendekatan intuitif menggunakan sintaks senarai lajur dengan tanda yang sama kelihatan mudah, ia boleh membawa kepada hasil yang tidak dijangka.
Cabaran
Seperti yang digambarkan dalam contoh yang disediakan, sintaks berikut gagal mencipta lajur baharu seperti yang dimaksudkan:
<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = [np.nan, 'dogs', 3]</code>
Ini kerana Pandas memerlukan bahagian kanan tugasan untuk menjadi DataFrame apabila menggunakan sintaks senarai lajur. Nilai atau senarai skalar tidak serasi dengan pendekatan ini.
Penyelesaian
Beberapa kaedah alternatif menawarkan penyelesaian yang berdaya maju untuk menambah berbilang lajur serentak:
Kaedah 1: Tugasan Individu Menggunakan Iterator Unpacking
<code class="python">df['column_new_1'], df['column_new_2'], df['column_new_3'] = np.nan, 'dogs', 3</code>
Kaedah 2: Kembangkan Baris Tunggal untuk Memadankan Indeks
<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)</code>
Kaedah 3: Gabungkan dengan Bingkai Data Sementara Menggunakan pd.concat
<code class="python">df = pd.concat( [ df, pd.DataFrame( [[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3'] ) ], axis=1 )</code>
Kaedah 4: Gabungkan dengan Temporary DataFrame Menggunakan .join
<code class="python">df = df.join(pd.DataFrame( [[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3'] ))</code>
Kaedah 5: Gunakan Kamus untuk Sementara DataFrame
<code class="python">df = df.join(pd.DataFrame( { 'column_new_1': np.nan, 'column_new_2': 'dogs', 'column_new_3': 3 }, index=df.index ))</code>
Kaedah 6: Gunakan .assign() dengan Argumen Berbilang Lajur
<code class="python">df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)</code>
Kaedah 7: Buat Lajur, Kemudian Berikan Nilai
<code class="python">new_cols = ['column_new_1', 'column_new_2', 'column_new_3'] new_vals = [np.nan, 'dogs', 3] df = df.reindex(columns=df.columns.tolist() + new_cols) # add empty cols df[new_cols] = new_vals # multi-column assignment works for existing cols</code>
Kaedah 8: Tugasan Berbilang Berurutan
<code class="python">df['column_new_1'] = np.nan df['column_new_2'] = 'dogs' df['column_new_3'] = 3</code>
Memilih kaedah yang paling sesuai akan bergantung pada faktor seperti saiz DataFrame, bilangan lajur baharu yang akan ditambah, dan keperluan prestasi tugasan. Namun begitu, teknik ini memperkasakan pengguna Pandas dengan pelbagai pilihan untuk menambahkan berbilang lajur secara cekap pada DataFrames mereka.
Atas ialah kandungan terperinci Bagaimana untuk Menambah Berbilang Lajur dengan Cekap pada Pandas DataFrame Serentak?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
