


Bagaimana untuk Mengindeks Tatasusunan NumPy 2D dengan Cekap Menggunakan Dua Senarai Indeks?
Mengindeks Tatasusunan NumPy 2D Menggunakan Dua Senarai Indeks
Objektifnya adalah untuk melaksanakan pengindeksan pada tatasusunan NumPy 2D menggunakan dua senarai indeks yang disediakan, satu untuk baris dan satu untuk lajur. Hasil yang diinginkan adalah untuk mendapatkan subset tatasusunan berdasarkan indeks yang ditentukan dengan cekap.
Menggunakan np.ix_
Untuk mencapai ini, kita boleh memanfaatkan fungsi np.ix_ daripada NumPy. np.ix_ mencipta tuple tatasusunan pengindeksan yang boleh digunakan untuk penyiaran. Begini cara ia berfungsi:
Dengan Tatasusunan Pengindeksan
Pilihan:
<code class="python">x_indexed = x[np.ix_(row_indices, col_indices)]</code>
Ini menghasilkan satu tuple mengindeks tatasusunan berdasarkan row_indices dan col_indices. Menyiarkan tatasusunan ini membolehkan kami mengindeks ke dalam x dan mengekstrak subset yang diingini.
Tugasan:
<code class="python">x[np.ix_(row_indices, col_indices)] = value</code>
Ini memberikan nilai yang ditentukan ke dalam kedudukan yang diindeks dalam x.
Dengan Topeng
Pilihan:
<code class="python">row_mask = np.array([True, False, False, True, False], dtype=bool) col_mask = np.array([False, True, True, False, False], dtype=bool) x_indexed = x[np.ix_(row_mask, col_mask)]</code>
Di sini, kami menggunakan topeng boolean (row_mask dan col_mask) untuk menentukan baris dan lajur yang hendak dipilih.
Tugasan:
<code class="python">x[np.ix_(row_mask, col_mask)] = value</code>
Ini memberikan nilai kepada kedudukan bertopeng dalam x.
< h3>Sample Run
Pertimbangkan tatasusunan dan senarai indeks berikut:
<code class="python">x = np.random.random_integers(0, 5, (20, 8)) row_indices = [4, 2, 18, 16, 7, 19, 4] col_indices = [1, 2]</code>
Menggunakan np.ix_, kita boleh mengindeks ke dalam x:
<code class="python">x_indexed = x[np.ix_(row_indices, col_indices)] print(x_indexed) # Output: # [[76 56] # [70 47] # [46 95] # [76 56] # [92 46]]</code>
Ini memberikan kita subset tatasusunan yang dikehendaki dengan baris dan lajur yang dipilih berdasarkan indeks yang disediakan.
Atas ialah kandungan terperinci Bagaimana untuk Mengindeks Tatasusunan NumPy 2D dengan Cekap Menggunakan Dua Senarai Indeks?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.
