Pemadanan rentetan secara cekap dalam persekitaran data besar seperti Apache Spark boleh mencabar, terutamanya apabila berurusan dengan kemungkinan variasi dalam data. Dalam senario ini, tugasnya adalah untuk memadankan teks yang diekstrak daripada tangkapan skrin dengan set data yang mengandungi teks yang betul. Walau bagaimanapun, teks yang diekstrak mungkin mengandungi ralat seperti penggantian aksara, ruang yang hilang dan emoji yang ditinggalkan.
Satu penyelesaian yang berpotensi ialah menukar tugas itu kepada masalah carian jiran terdekat dan memanfaatkan Pencincangan Sensitif Lokaliti (LSH) kepada cari rentetan yang serupa. LSH mengurangkan dimensi data sambil mengekalkan kedekatannya, membolehkan padanan yang cekap dan anggaran.
Untuk melaksanakan pendekatan ini dalam Apache Spark, kami boleh menggunakan gabungan pengubah pembelajaran mesin dan algoritma LSH:
Dengan menggabungkan teknik ini, kami boleh mencipta penyelesaian padanan rentetan yang cekap dalam Apache Spark yang boleh mengendalikan variasi dalam teks input. Pendekatan ini telah berjaya digunakan dalam senario yang serupa untuk tugasan seperti padanan teks, jawapan soalan dan sistem pengesyoran.
Atas ialah kandungan terperinci Bagaimanakah Hashing Sensitif Lokaliti dalam Apache Spark Meningkatkan Kecekapan Padanan Rentetan dalam Data Besar?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!