


Bagaimanakah Hashing Sensitif Lokaliti dalam Apache Spark Meningkatkan Kecekapan Padanan Rentetan dalam Data Besar?
Pemadanan Rentetan yang Cekap dalam Apache Spark
Pemadanan rentetan secara cekap dalam persekitaran data besar seperti Apache Spark boleh mencabar, terutamanya apabila berurusan dengan kemungkinan variasi dalam data. Dalam senario ini, tugasnya adalah untuk memadankan teks yang diekstrak daripada tangkapan skrin dengan set data yang mengandungi teks yang betul. Walau bagaimanapun, teks yang diekstrak mungkin mengandungi ralat seperti penggantian aksara, ruang yang hilang dan emoji yang ditinggalkan.
Satu penyelesaian yang berpotensi ialah menukar tugas itu kepada masalah carian jiran terdekat dan memanfaatkan Pencincangan Sensitif Lokaliti (LSH) kepada cari rentetan yang serupa. LSH mengurangkan dimensi data sambil mengekalkan kedekatannya, membolehkan padanan yang cekap dan anggaran.
Untuk melaksanakan pendekatan ini dalam Apache Spark, kami boleh menggunakan gabungan pengubah pembelajaran mesin dan algoritma LSH:
- Tokenize Teks: Pisahkan teks input kepada token menggunakan RegexTokenizer untuk mengendalikan kemungkinan penggantian aksara.
- Buat N-Grams: Gunakan Pengubah NGram untuk menjana n-gram (cth., 3-gram) daripada token, menangkap jujukan aksara.
- Vektorkan N-Gram: Tukarkan n-gram kepada vektor ciri menggunakan vectorizer seperti HashingTF. Ini membenarkan perwakilan berangka bagi teks.
- Gunakan Pencincangan Sensitif Lokaliti (LSH): Gunakan pengubah MinHashLSH untuk mencipta berbilang jadual cincang untuk vektor. Ini mengurangkan dimensinya dan membolehkan anggaran carian jiran terdekat.
- Pasang Model pada Set Data: Pasangkan saluran paip transformer pada set data teks yang betul.
- Ubah Kedua-dua Pertanyaan dan Set Data: Ubah kedua-dua teks pertanyaan dan set data menggunakan model yang dipasang.
- Sertai pada Persamaan: Gunakan model LSH untuk melaksanakan anggaran persamaan gabungan antara pertanyaan dan set data yang diubah, mengenal pasti padanan serupa berdasarkan ambang persamaan.
Dengan menggabungkan teknik ini, kami boleh mencipta penyelesaian padanan rentetan yang cekap dalam Apache Spark yang boleh mengendalikan variasi dalam teks input. Pendekatan ini telah berjaya digunakan dalam senario yang serupa untuk tugasan seperti padanan teks, jawapan soalan dan sistem pengesyoran.
Atas ialah kandungan terperinci Bagaimanakah Hashing Sensitif Lokaliti dalam Apache Spark Meningkatkan Kecekapan Padanan Rentetan dalam Data Besar?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
