Jadual Kandungan
Pemadanan Rentetan yang Cekap dalam Apache Spark
Rumah pembangunan bahagian belakang Tutorial Python Bagaimanakah Hashing Sensitif Lokaliti dalam Apache Spark Meningkatkan Kecekapan Padanan Rentetan dalam Data Besar?

Bagaimanakah Hashing Sensitif Lokaliti dalam Apache Spark Meningkatkan Kecekapan Padanan Rentetan dalam Data Besar?

Oct 28, 2024 pm 02:31 PM

 How can Locality-Sensitive Hashing in Apache Spark Improve String Matching Efficiency in Big Data?

Pemadanan Rentetan yang Cekap dalam Apache Spark

Pemadanan rentetan secara cekap dalam persekitaran data besar seperti Apache Spark boleh mencabar, terutamanya apabila berurusan dengan kemungkinan variasi dalam data. Dalam senario ini, tugasnya adalah untuk memadankan teks yang diekstrak daripada tangkapan skrin dengan set data yang mengandungi teks yang betul. Walau bagaimanapun, teks yang diekstrak mungkin mengandungi ralat seperti penggantian aksara, ruang yang hilang dan emoji yang ditinggalkan.

Satu penyelesaian yang berpotensi ialah menukar tugas itu kepada masalah carian jiran terdekat dan memanfaatkan Pencincangan Sensitif Lokaliti (LSH) kepada cari rentetan yang serupa. LSH mengurangkan dimensi data sambil mengekalkan kedekatannya, membolehkan padanan yang cekap dan anggaran.

Untuk melaksanakan pendekatan ini dalam Apache Spark, kami boleh menggunakan gabungan pengubah pembelajaran mesin dan algoritma LSH:

  1. Tokenize Teks: Pisahkan teks input kepada token menggunakan RegexTokenizer untuk mengendalikan kemungkinan penggantian aksara.
  2. Buat N-Grams: Gunakan Pengubah NGram untuk menjana n-gram (cth., 3-gram) daripada token, menangkap jujukan aksara.
  3. Vektorkan N-Gram: Tukarkan n-gram kepada vektor ciri menggunakan vectorizer seperti HashingTF. Ini membenarkan perwakilan berangka bagi teks.
  4. Gunakan Pencincangan Sensitif Lokaliti (LSH): Gunakan pengubah MinHashLSH untuk mencipta berbilang jadual cincang untuk vektor. Ini mengurangkan dimensinya dan membolehkan anggaran carian jiran terdekat.
  5. Pasang Model pada Set Data: Pasangkan saluran paip transformer pada set data teks yang betul.
  6. Ubah Kedua-dua Pertanyaan dan Set Data: Ubah kedua-dua teks pertanyaan dan set data menggunakan model yang dipasang.
  7. Sertai pada Persamaan: Gunakan model LSH untuk melaksanakan anggaran persamaan gabungan antara pertanyaan dan set data yang diubah, mengenal pasti padanan serupa berdasarkan ambang persamaan.

Dengan menggabungkan teknik ini, kami boleh mencipta penyelesaian padanan rentetan yang cekap dalam Apache Spark yang boleh mengendalikan variasi dalam teks input. Pendekatan ini telah berjaya digunakan dalam senario yang serupa untuk tugasan seperti padanan teks, jawapan soalan dan sistem pengesyoran.

Atas ialah kandungan terperinci Bagaimanakah Hashing Sensitif Lokaliti dalam Apache Spark Meningkatkan Kecekapan Padanan Rentetan dalam Data Besar?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1655
14
Tutorial PHP
1254
29
Tutorial C#
1228
24
Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

See all articles