


Bagaimanakah Apache Spark Boleh Digunakan untuk Padanan Rentetan yang Cekap dengan Ralat OCR?
Pemadanan Rentetan yang Cekap dengan Apache Spark: Panduan Komprehensif
Pengenalan:
Pertambahan penggunaan alat Pengecaman Aksara Optik (OCR) telah menyerlahkan keperluan untuk algoritma pemadanan rentetan yang cekap untuk mengendalikan ralat OCR. Spark, rangka kerja pemprosesan data yang popular, menawarkan pelbagai penyelesaian untuk tugasan ini.
Masalah:
Apabila melakukan OCR pada tangkapan skrin, ralat seperti penggantian huruf (" I" dan "l" kepada "|"), penggantian emoji dan penyingkiran ruang boleh berlaku. Memadankan teks yang diekstrak ini dengan set data yang besar menimbulkan cabaran kerana ketidaktepatan ini.
Penyelesaian:
Spark menyediakan gabungan pengubah pembelajaran mesin yang boleh digabungkan untuk melaksanakan padanan rentetan yang cekap.
Langkah:
- Tokenisasi (pisahkan rentetan input kepada perkataan atau aksara individu):
<code class="scala">import org.apache.spark.ml.feature.RegexTokenizer val tokenizer = new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens")</code>
- Penjanaan N-gram (buat jujukan aksara):
<code class="scala">import org.apache.spark.ml.feature.NGram val ngram = new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams")</code>
- Vektorisasi (tukar teks kepada ciri berangka):
<code class="scala">import org.apache.spark.ml.feature.HashingTF val vectorizer = new HashingTF().setInputCol("ngrams").setOutputCol("vectors")</code>
- Pencincangan Sensitif Tempatan (LSH):
<code class="scala">import org.apache.spark.ml.feature.{MinHashLSH, MinHashLSHModel} val lsh = new MinHashLSH().setInputCol("vectors").setOutputCol("lsh")</code>
- Menggabungkan Transformer ke Saluran Paip:
<code class="scala">import org.apache.spark.ml.Pipeline val pipeline = new Pipeline().setStages(Array(tokenizer, ngram, vectorizer, lsh))</code>
- Model Pemasangan:
<code class="scala">val query = Seq("Hello there 7l | real|y like Spark!").toDF("text") val db = Seq( "Hello there ?! I really like Spark ❤️!", "Can anyone suggest an efficient algorithm" ).toDF("text") val model = pipeline.fit(db)</code>
- Mengubah dan Mencantum:
<code class="scala">val dbHashed = model.transform(db) val queryHashed = model.transform(query) model.stages.last.asInstanceOf[MinHashLSHModel] .approxSimilarityJoin(dbHashed, queryHashed, 0.75).show</code>
Pendekatan ini membolehkan pemadanan rentetan yang cekap walaupun terdapat ralat OCR, menghasilkan keputusan yang tepat.
Atas ialah kandungan terperinci Bagaimanakah Apache Spark Boleh Digunakan untuk Padanan Rentetan yang Cekap dengan Ralat OCR?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Menggunakan Python di Terminal Linux ...

Fastapi ...

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...
