


Bagaimanakah saya boleh menentukan dengan tepat bilangan teras fizikal dalam sistem saya, dengan mengambil kira kehadiran hyper-threading?
Mengesan Bilangan Pemproses/Teras Fizikal dengan Sokongan Hyper-Threading
Dalam aplikasi berbilang benang yang bertujuan untuk kecekapan maksimum, mengetahui bilangan pemproses fizikal atau teras adalah penting. Mencipta benang yang berlebihan boleh menghalang prestasi, terutamanya dalam senario di mana hyper-threading disokong.
Pengesanan Hyper-Threading
Untuk menentukan bilangan pemproses fizikal dengan tepat, anda perlu untuk mengesan sama ada hyper-threading disokong dan didayakan. Begini cara anda boleh melakukannya:
- Kenal pasti Vendor CPU: Laksanakan arahan CPUID dengan fungsi 0 untuk mendapatkan semula vendor CPU (cth., "GenuineIntel" atau "AuthenticAMD").
- Semak Hyper-Threading (Intel): Untuk pemproses Intel, semak bit 28 dalam EDX daripada fungsi CPUID 1. Jika ia ditetapkan, hyper-threading disokong.
- Semak Hyper-Threading (AMD): Untuk pemproses AMD, laksanakan fungsi CPUID 0x80000008 untuk mendapatkan bilangan teras dalam ECX[7:0]. Jika nombor ini lebih besar daripada sifar, hyper-threading disokong.
Menentukan Kiraan Teras Fizikal
Setelah sokongan hyper-threading dikesan, ikut langkah ini untuk menentukan bilangan teras fizikal:
- Untuk pemproses Intel, laksanakan fungsi CPUID 4 dan dapatkan kiraan daripada EAX[31:26] 1.
- Untuk pemproses AMD, gunakan sebelumnya memperoleh nilai ECX[7:0] daripada fungsi CPUID 0x80000008 dan tambah 1.
Contoh Pelaksanaan
Aturcara C berikut menunjukkan pengesanan hiper- benang dan bilangan teras fizikal:
<code class="cpp">#include <iostream> #include <string> using namespace std; void cpuID(unsigned i, unsigned regs[4]) { #ifdef _WIN32 __cpuid((int *)regs, (int)i); #else asm volatile ("cpuid" : "=a" (regs[0]), "=b" (regs[1]), "=c" (regs[2]), "=d" (regs[3]) : "a" (i), "c" (0)); #endif } int main(int argc, char *argv[]) { unsigned regs[4]; // ... (Code for vendor detection, feature check, and logical core count) // Hyper-Threading detection bool hyperThreads = cpuFeatures & (1 << 28) && cores < logical; // ... (Code for physical core count based on vendor) cout << "hyper-threads: " << (hyperThreads ? "true" : "false") << endl; return 0; }</code>
Kesimpulan
Dengan mengikuti langkah-langkah ini, anda boleh mengesan bilangan pemproses/teras fizikal dengan tepat semasa mengambil kira hiper -sokongan benang. Maklumat ini tidak ternilai untuk mengoptimumkan prestasi aplikasi berbilang benang anda.
Atas ialah kandungan terperinci Bagaimanakah saya boleh menentukan dengan tepat bilangan teras fizikal dalam sistem saya, dengan mengambil kira kehadiran hyper-threading?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Sejarah dan evolusi C# dan C adalah unik, dan prospek masa depan juga berbeza. 1.C dicipta oleh BjarnestroustRup pada tahun 1983 untuk memperkenalkan pengaturcaraan berorientasikan objek ke dalam bahasa C. Proses evolusinya termasuk pelbagai standardisasi, seperti C 11 memperkenalkan kata kunci auto dan ekspresi Lambda, C 20 memperkenalkan konsep dan coroutin, dan akan memberi tumpuan kepada pengaturcaraan prestasi dan sistem pada masa akan datang. 2.C# telah dikeluarkan oleh Microsoft pada tahun 2000. Menggabungkan kelebihan C dan Java, evolusinya memberi tumpuan kepada kesederhanaan dan produktiviti. Sebagai contoh, C#2.0 memperkenalkan generik dan C#5.0 memperkenalkan pengaturcaraan tak segerak, yang akan memberi tumpuan kepada produktiviti pemaju dan pengkomputeran awan pada masa akan datang.

Terdapat perbezaan yang signifikan dalam lengkung pembelajaran C# dan C dan pengalaman pemaju. 1) Keluk pembelajaran C# agak rata dan sesuai untuk pembangunan pesat dan aplikasi peringkat perusahaan. 2) Keluk pembelajaran C adalah curam dan sesuai untuk senario kawalan berprestasi tinggi dan rendah.

Penggunaan analisis statik di C terutamanya termasuk menemui masalah pengurusan memori, memeriksa kesilapan logik kod, dan meningkatkan keselamatan kod. 1) Analisis statik dapat mengenal pasti masalah seperti kebocoran memori, siaran berganda, dan penunjuk yang tidak dikenali. 2) Ia dapat mengesan pembolehubah yang tidak digunakan, kod mati dan percanggahan logik. 3) Alat analisis statik seperti perlindungan dapat mengesan limpahan penampan, limpahan integer dan panggilan API yang tidak selamat untuk meningkatkan keselamatan kod.

C Berinteraksi dengan XML melalui perpustakaan pihak ketiga (seperti TinyXML, PugixML, Xerces-C). 1) Gunakan perpustakaan untuk menghuraikan fail XML dan menukarnya ke dalam struktur data C-diproses. 2) Apabila menjana XML, tukar struktur data C ke format XML. 3) Dalam aplikasi praktikal, XML sering digunakan untuk fail konfigurasi dan pertukaran data untuk meningkatkan kecekapan pembangunan.

Menggunakan perpustakaan Chrono di C membolehkan anda mengawal selang masa dan masa dengan lebih tepat. Mari kita meneroka pesona perpustakaan ini. Perpustakaan Chrono C adalah sebahagian daripada Perpustakaan Standard, yang menyediakan cara moden untuk menangani selang waktu dan masa. Bagi pengaturcara yang telah menderita dari masa. H dan CTime, Chrono tidak diragukan lagi. Ia bukan sahaja meningkatkan kebolehbacaan dan mengekalkan kod, tetapi juga memberikan ketepatan dan fleksibiliti yang lebih tinggi. Mari kita mulakan dengan asas -asas. Perpustakaan Chrono terutamanya termasuk komponen utama berikut: STD :: Chrono :: System_Clock: Mewakili jam sistem, yang digunakan untuk mendapatkan masa semasa. Std :: Chron

Masa depan C akan memberi tumpuan kepada pengkomputeran selari, keselamatan, modularization dan pembelajaran AI/mesin: 1) Pengkomputeran selari akan dipertingkatkan melalui ciri -ciri seperti coroutine; 2) keselamatan akan diperbaiki melalui pemeriksaan jenis dan mekanisme pengurusan memori yang lebih ketat; 3) modulasi akan memudahkan organisasi dan penyusunan kod; 4) AI dan pembelajaran mesin akan mendorong C untuk menyesuaikan diri dengan keperluan baru, seperti pengkomputeran berangka dan sokongan pengaturcaraan GPU.

C isnotdying; it'sevolving.1) c suplemenvantduetoitsverversatilityandeficiencyinperformance-criticalapplications.2) thelanguageiscontinuouslyupdated, withc 20introducingfeatureslikemodulesandcoroutinestoMproveusability.3)

C# menggunakan mekanisme pengumpulan sampah automatik, manakala C menggunakan pengurusan memori manual. 1. Pemungut Sampah C 2.C menyediakan kawalan memori yang fleksibel, sesuai untuk aplikasi yang memerlukan pengurusan yang baik, tetapi harus dikendalikan dengan berhati -hati untuk mengelakkan kebocoran ingatan.
